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CHAPTER 1

What is a heat kernel?

Working with abstract metric measure spaces or with concrete fractal spaces in my daily research
has made me realize how easily one can forget the way things work in the most basic settings
such as the real line. To take the audience in a journey through my research, it seems to me that
precisely such a classic example may serve as bridge and lens to enter into the field with ease.

We will thus use the real line as ice-breaker in our outing to the land of heat kernels and heat
semigroups, to build trust and later meet with ease non-smooth metric measure spaces like frac-
tals ,.

1.1. The heat equation on the real line

We owe the story of the heat equation (H) to the compound work of many protagonists, including
Robert Brown (botanist), Albert Einstein (Physicist) and Norbert Wiener (mathematician). The
quantity u(t, x) whose dynamics are modeled by the partial differential equation (H) represents
the temperature at a certain time t ≥ 0 and point within the object under investigation, in our
case x ∈ R. {

∂tu(t, x) = 1
2∂

2
xu(t, x) x ∈ R

u(0, x) = u0(x),
(H)

where u0 represents the initial temperature of the infinite long cord (−∞,+∞).

One of the most common ways to solve (H) relies on Fourier analysis. Our convention for the
Fourier transform of a function u ∈ L1(R, dx) will be

F(v(x))(ξ) := v̂(ξ) :=
1

2π

∫
R
e−iξxv(x) dx. (1.1.1)

We refer to [23, Chapter 9] for its many properties, in particular

d̂

dx
v(ξ) = −iξv̂(ξ).
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Chapter 1. What is a heat kernel? 1.1. The Gaussian HK

Taking the Fourier transform everywhere in (H) we arrive at the equation{
d
dt û(t, ξ) = −1

4ξ
2û(t, ξ)

û(0, ξ) = û0(ξ).
(1.1.2)

Looking closely at the right hand side of this equation we realize the “magic” of the Fourier trans-
form: the space-derivative disappeared! Now we are left with an ordinary differential equation,
which can be solve through the Ansatz

û(t, ξ) = e−
1
4
ξ2tû0(ξ) (1.1.3)

and the solution to the original equation (H) will materialize by taking the inverse Fourier trans-
form of (1.1.3).

Exercise 1.1.1. Show that the inverse Fourier transform of (1.1.3) equals

u(t, x) =
1

2π

∫
R
eiξxû(t, ξ) dξ =

∫
R

1√
4πt

e−
(x−y)2

4t u0(y) dy.

For the sake of completeness, and to see how/where the dimension of the underlying space plays
a role, similar computations to those in Exercise 1.1.1 yield

u(t, x) =

∫
Rn

1

(4πt)n/2
e−
‖x−y‖2

4t u0(y) dy (1.1.4)

as solution to the heat equation in Rn. Note that the partial second derivative ∂2
x will be replaced

by its multi-dimensional version, the Laplacian ∆u =
∑n

i=1 ∂
2
xiu.

Definition 1.1.2. The family of functions {pt}t≥0 given by

pt(x, y) =
1

(4πt)n/2
e−
‖x−y‖2

4t , x, y ∈ Rn, (1.1.5)

is called the standard (probabilistic, Gaussian) heat kernel in Rn.

Intuitively, although this is not mathematically rigorous, one may think of pt(x, y) as the proba-
bility that heat moves from x to y at time t.

Now, what are the main properties of these functions pt(x, y)?

Proposition 1.1.3. For any t ≥ 0, x, y ∈ Rn and u0 ∈ L2(Rn, dx),

(i) pt(x, y) ≥ 0 (non-negative),

(ii) pt(x, y) = pt(y, x) (symmetric),

(iii)
∫
Rn

pt(x, y) dy = 1 (stochastic completeness),

(iv) ps+t(x, y) =

∫
Rn

ps(x, z)pt(z, y) dz (semigroup property),

(v)
∫
Rn

pt(·, y)u0(y) dy
L2

−−−→
t→0+

u0.

© Patricia Alonso Ruiz
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Chapter 1. What is a heat kernel? 1.2. Heat kernels

Proof. Items (i) and (ii) follow from direct inspection. The square of the integral in (iii) can be
computed directly using polar coordinates and equals one. The semigroup property follows from
the identity

1

(4π(t1 + t2))n/2
e
− ‖x−y‖2

4(t1+t2) =
1

(4πt1)n/2
1

(4πt2)n/2

∫
Rn

e
− ‖x−z‖2

4t1 e
− ‖y−z‖2

4t2 dz.

The limit in the last item is proved first pointwise for bounded continuous functions, and afterwards
extended by density to L2-functions. We show here the pointwise limit

lim
t→0+

∫
Rn

pt(x, y)u0(y) dy = u0(x).

Applying (iii), polar coordinates and a change of variables, for any M > 0∣∣∣u(x)−
∫
Rn

pt(x, y)u0(y) dy
∣∣∣

=
∣∣∣ 1

(4πt)n/2

∫ ∞
0

e−
r2

4t rd−1

∫
Sn−1

(
u(x)− u(x+ rθ)

)
dσ(θ) dr

∣∣∣
≤
∣∣∣ 1

πn/2

∫ M

0
e−s

2
sd−1

∫
Sn−1

(
u(x)− u(x+ 2

√
tsθ)

)
dσ(θ) ds

∣∣∣
+
∣∣∣ 1

πn/2

∫ ∞
M

e−s
2
sd−1

∫
Sn−1

(
u(x)− u(x+ 2

√
tsθ)

)
dσ(θ) ds

∣∣∣
≤ sup
|y−x|≤2

√
tM

|u(x)− u(y)|+ ‖u‖L∞
2vol(Sn−1)

πn/2

∫ ∞
M

e−s
2
sn−1ds.

For any ε > 0 we may choose M large enough to bound the second term by ε/2, and afterwards
choose t0 > 0 so that the first term is also bounded by ε/2 for all 0 < t < t0.

1.2. Heat kernels

The properties of the standard Gaussian heat kernel on Rn are going to serve as guidelines to
define the concept of heat kernel in the more general setting of a metric measure space (M,d, µ).
For the moment we only ask the space to be locally compact and separable, with the measure µ
Radon (i.e. finite on compact sets, outer regular on Borel sets, and inner regular on open sets)
and of full support. The following definition can be found in many sources, we refer here to [10].

Definition 1.2.1. A heat kernel {pt}t≥0 is a family of µ⊗ µ-measurable functions such that, for
each t ≥ 0

(i) pt(x, y) ≥ 0 for µ-a.e. x, y ∈M ,

(ii) pt(x, y) = pt(y, x) for µ-a.e. x, y ∈M ,

(iii)
∫
M
pt(x, y) dµ(y) = 1 for µ-a.e. x ∈M ,

(iv) ps+t(x,y) =

∫
M
ps(x, z)pt(y, z) dµ(z) for any 0 ≤ s ≤ t <∞ and µ-a.e. x, y ∈M ,

© Patricia Alonso Ruiz
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Chapter 1. What is a heat kernel? 1.3. Heat semigroups

(v)
∫
M
pt(·, y)u0(y) dµ(y)

L2

−−−→
t→0+

u0.

For some it may be noteworthy to point out that, in applications, heat kernels rarely have an ex-
plicit formula like (1.1.5). Most of the times it is possible to prove their existence and approximate
behavior in terms of being bounded above and below by some explicit function.

1.3. Heat semigroups

We continue under the guidance of the real line. Having seen the expression (1.1.4) of the solution
to the heat equation in terms of the Gaussian heat kernel, we will start by investigating some
properties of the integral operators induced by a heat kernel pt(x, y).

Proposition 1.3.1. Let {pt}t≥0 denote a heat kernel and define

Pt : L
2(M,µ) −→ L2(M,µ)

u 7−→
∫
M
pt(·, y)u(y) dµ(y).

(1.3.1)

Then, for any u, v ∈ L2(M,µ) and t ≥ 0

(i) Ptu ≥ 0 if u ≥ 0,

(ii) 〈u, Ptv〉L2 = 〈Ptu, v〉L2 ,

(iii) ‖Ptu‖L2 ≤ ‖u‖L2,

(iv) Pt+su = PtPsu for any s, t ≥ 0,

(v) ‖Ptu− u‖L2 −−−→
t→0+

0.

Proof. Properties (i) and (ii) are direct consequences of the definition (1.3.1). Property (iii) follows
from the symmetry of pt(x, y) and (iv) from Cauchy-Schwarz and Definition 1.2.1 (iii). Property
(iv) is Definition 1.2.1 (v).

Let us now introduce the formal definition of a (heat) semigroup, again emphasizing that we take
as underlying function space L2(M,µ) for the purposes of these notes, although the general theory
of semigroups works in setting of Banach spaces.

Definition 1.3.2. A semigroup is a family of bounded linear operators {Pt}t≥0 in L2(M,µ) that
satisfy

P0 = Id and Pt+s = PtPs. (1.3.2)

Looking at this definition we recognize that the integral operators induced by heat kernels as
in (1.3.1) are indeed semigroups ,.

Definition 1.3.3. A semigroup {Pt}t≥0 is called

(i) strongly continuous if

‖Ptu− u‖L2 −−−→
t→0+

0 ⇔ u ∈ L2(M,µ). (1.3.3)

© Patricia Alonso Ruiz
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Chapter 1. What is a heat kernel? 1.4. Infinitesimal generators

(ii) contractive if
‖Ptu‖L2 ≤ ‖u‖L2 ∀u ∈ L2(M,µ), t ≥ 0. (1.3.4)

Strong continuity is a key property when it comes to link a semigroup with an operator that will
naturally act as the second derivative we saw in the heat equation (H).

Lemma 1.3.4. Let {Pt}t≥0 be a strongly continuous contraction semigroup in L2(M,µ). Then,

(i) Ptu ∈ L2(M,µ) for all u ∈ L2(M,µ).

(ii) ‖Pt+hu− Ptu‖L2 −−−−→
h→0+

0 for all u ∈ L2(M,µ) and t ≥ 0.

Proof. (i) follows directly from contractivity (1.3.4). To prove (ii), applying the semigroup prop-
erty (1.3.2), (i), contractivity and strong continuity

‖Ph(Ptu)− Ptu‖L2 = ‖Pt(Phu− u)‖L2 ≤ ‖Phu− u‖t→∞ −−−−→
h→0+

0.

1.4. Infinitesimal generators

As mentioned in the previous section, the infinitesimal generator of a strongly continuous contrac-
tive semigroup is the operator that will naturally act as the second derivative in the heat equation.
Before going into precise definitions, let us take a short tour over differentiation and integration
properties of L2-valued functions. For a strongly continuous contractive semigroup {Pt}t≥0 on
L2(M,µ) we define

◦ Differentiation: For any u ∈ L2(M,µ),

d

ds
Psu := lim

h→0

1

h
(Ps+hu− Psu).

◦ Integration: For any interval [a, b] with 0 ≤ a < b < ∞, consider for each n ≥ 1 a partition
given by a = t0 < t1 < . . . < tn = b, so that max

1≤k<n
|tk − tk−1|

n→∞−−−→ 0.

For any u ∈ L2(M,µ), define∫ a

b
Psuds := s− lim

n→∞

n∑
k=1

(tk − tk−1)Psku,

where sk ∈ [tk, tk−1] for every 1 ≤ k ≤ n.

The next lemma collects useful properties of differentiation and integration for strongly continuous
semigroups that we will use later on.

Lemma 1.4.1. Let {Pt}t≤0 be a strongly continuous semigroup on L2(M,µ), then

(i) For all f ∈ L2(M,µ) and s ≥ 0,∥∥∥∥∫ b

a
Psfds

∥∥∥∥
L2

≤
∫ b

a
‖Psf‖L2 ds.

© Patricia Alonso Ruiz
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Chapter 1. What is a heat kernel? 1.5. Hille-Yosida

(ii) For all f ∈ L2(M,µ) and t ≥ 0,

s− lim
h→0

1

h

∫ t+h

t
Psfds = Ptf.

(iii) For all f ∈ L2(M,µ), 0 ≤ a < b <∞ and t ≥ 0,

Pt

(∫ b

a
Psfds

)
=

∫ b

a
Pt+sfds =

∫ b+t

a+t
Psfds.

(iv) For all f ∈ L2(M,µ), 0 ≤ a < b <∞ and s ≥ 0,∫ b

a

d
dsPsfds = Pbf − Paf.

All the properties stated above hold replacing L2(M,µ) by an abstract Banach space.

Definition 1.4.2. The infinitesimal generator of a strongly continuous semigroup {Pt}t≥0 on
L2(M,µ) is the closed linear operator

Lu := s− lim
t→0+

1

t
(Ptu− u) (1.4.1)

with domain D(L) = {u ∈ L2(M,µ) : the limit in (1.4.1) exists}.

It will become apparent in Section 1.6 why one often refers to infinitesimal generator L as the
Laplacian. Let us finish this section by checking some of its main properties.

Proposition 1.4.3. Let {Pt}t≥0 be a strongly continuous semigroup on L2(M,µ) with infinitesi-
mal generator (L,D(L)).

(i) D(L) = L2(M,µ),

(ii) For any u ∈ D(L), Lu ∈ L2(M,µ).

(iii) For any u ∈ L2(M,µ),
∫ t

0
Psu ds ∈ D(L) and Ptu− u = L

(∫ t

0
Psu ds

)
.

Proof. For (i), see e.e [21, Proposition 1.10]. To prove (ii), if u ∈ D(L), then u ∈ L2(M,µ) and
thus Lemma 1.3.4(ii) implies 1

h(Phu−u) ∈ L2(M,µ) for any h > 0. Since the operator L is closed,
the limit Lu = s− lim

h→0+
1
h(Phu− u) exists and is in L2(M,µ).

1.5. Hille-Yosida

The words “Hille-Yosida” encompass results that put strongly continuous contraction semigroups,
operators and resolvents, which are defined as

Rλ = (λI − L)−1, λ ∈ ρ(L),

where L is the associated (closed) operator and ρ(L) is the resolvent set of L given by

© Patricia Alonso Ruiz
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Chapter 1. What is a heat kernel? 1.6. Back to the heat equation

ρ(L) := {λ ∈ R : (λI − L)−1exists as bounded linear operator}.
We will not enter into further details regarding these operators and refer the interested reader
to [21, Chapter 1].

The version of the Hille-Yosida theorem that we present here is tailored to the Hilbert space
L2(M,µ), although please keep in mind that it holds more generally for closed operators in a
Banach space.

Theorem 1.5.1. A closed operator (L,D(L)) with D(L) ⊂ L2(X,µ) is the infinitesimal generator
of a strongly continuous contraction semigroup {Pt}t≥0 on L2(X,µ) if and only if

(i) D(L) is dense in L2(X,µ) with respect to the L2-norm,

(ii) (0,∞) ⊂ ρ(L) and its resolvent satisfies

‖λRλ‖L2 ≤ 1 ∀λ > 0.

Proof. See [21, Theorem 1.12].

How does the theorem actually relate an operator (L,D(L)) and the semigroup of which it is the
infinitesimal generator? The connection is hidden in the proof ,. There, one ends up proving
that

Pt = etL =
∞∑
k=0

tk

k!
Lk

for any t ≥ 0. The series above is also understood as the strong limit s− lim
n→∞

n∑
k=0

tk

k!
Lk.

Remark 1.5.2. The spectral theorem, see e.g. [5, Theorem 2.5.2] allows one to understand powers
of an operator (including fractional powers) like Lk.

1.6. Back to the heat equation

We started this chapter with the heat equation on the line{
∂tu(t, x) = 1

2∂
2
xu(t, x), x ∈ R

u(0, x) = u0(x).
(H)

Its solution, whose expression we found in (1.1.4), could now abstractly be written as

u(t, x) =

∫
R
pt(x, y)u0(y) dy = Ptu0(x), (1.6.1)

where pt(x, y) is the standard Gaussian heat kernel (1.1.5) and Pt the associated semigroup.

Exercise 1.6.1. Show that the infinitesimal generator of the semigroup (1.6.1) coincides with the
operator u(x) 7→ 1

2u
′′(x), i.e.

Lu = s− lim
t→0+

1

t
(Ptu− u) =

1

2
u′′

and D(L) coincides with the Sobolev space

H2(R) := {u ∈ L2(R, dx) : u′, u′′ ∈ L2(R, dx)}.

© Patricia Alonso Ruiz
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Chapter 1. What is a heat kernel? 1.6. Back to the heat equation

The latter exercise tells us that we may rewrite (H) abstractly as{
∂tu(t, x) = Lu(t, x), x ∈ R
u(0, x) = u0(x),

which together with (1.6.1) says
d

dt
Ptu0 = LPtu0

as long as Ptu0 ∈ D(L).

This is pretty nice! In fact we will see in this section that the equality above also holds when the
underlying space is a generic metric measure space (M,d, µ) equipped with a strongly continuous
contraction semigroup ,.

Theorem 1.6.2. Let {Pt}t≥0 be a strongly continuous contractive semigroup in L2(M,µ) with
infinitesimal generator (L,D(L)). Then, for any u ∈ D(L), we have Ptu ∈ D(L) and

d

dt
Ptu = LPtu = PtLu. (1.6.2)

In particular,

Ptu− u =

∫ t

0
LPsu ds =

∫ t

0
PsLuds (1.6.3)

for all u ∈ D(L).

Proof. We start with the second equality in (1.6.2). By definition of L, for any u ∈ D(L)

LPtu = s− lim
h→0+

1

h
(Pt+hu− Ptu) = s− lim

h→0+
Pt

(1

h
(Phu− u)

)
= Pt

(
s− lim
h→0+

1

h
(Phu− u)

)
= PtLu.

To prove the first equality in (1.6.2), notice that while

s− lim
h→0+

1

h
(PhPtu− Ptu) = LPtu

holds by definition, it still remains to show that the same is true for the left-limit. By replacing
h by −h above,

s− lim
h→0−

1

h
(Pt+hu− Ptu) = s− lim

h→0+

1

h
(Ptu− Pt−hu).

How does that equal PtLu? Due to the contraction property of the semigroup, the definition of
L and the strong continuity of the semigroup∥∥1

h
(Ptu− Pt−hu)− LPtu

∥∥
L2 =

∥∥1

h
(Pt−hPhu− Pt−hu)− PtLu

∥∥
L2

≤
∥∥Pt−h∥∥∥∥1

h
(Phu− u)− PhLu

∥∥
L2

≤
∥∥1

h
(Phu− u)− Lu

∥∥+
∥∥Lu− PhLu∥∥L2

h→0+−−−−→ 0.

By Proposition 1.4.3 (iii), the definition of L and Lemma 1.3.4 (i) and (ii) we have

© Patricia Alonso Ruiz
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Chapter 1. What is a heat kernel? 1.6. Back to the heat equation

∥∥∥Ptu− u− ∫ t

0
LPsu ds

∥∥∥
L2

≤
∥∥∥Ptu− u− 1

h
(Ph − I)

∫ t

0
Psu ds

∥∥∥
L2

+
∥∥∥1

h
(Ph − I)

∫ t

0
Psu ds−

∫ t

0
LPsu ds

∥∥∥
L2

≤
∥∥∥∫ t

0
Ps(

1

h
(Ph − I)u− Lu)ds

∥∥∥
L2

+O(h)

≤
∫ t

0

∥∥∥1

h
(Ph − I)f − Lf

∥∥∥ds+O(h)
h→0+−−−−→ 0,

which proves the first equality in (1.6.3). The second equality follows by the second equality
in (1.6.2).

© Patricia Alonso Ruiz
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CHAPTER 2

What is a Dirichlet form?

2.1. The heat equation and symmetric forms

Looking back at Theorem 1.6.2, we have found that Ptu0 solves the heat equation with initial
value u0 as long as u0 ∈ D(L). What is this domain in our guiding example R? Here is when the
weak formulation of the heat equation comes into play.

To formulate (H) weakly, we take a family of test functions {ϕ} which is dense in L2(R, dx) and
“test” each side of the equality in the equation. Smooth functions vanishing at infinity, C∞0 (R),
are a common useful choice. In this way, for any ϕ ∈ C∞0 (R),∫

R
∂tuϕdx =

1

2

∫
R
u′′ϕdx. (2.1.1)

Here we see that a solution u to the heat equation belongs to the Sobolev space H2(R). Working
with PDEs, that is usually a lot of regularity to ask. How does one go about posing the same
problem allowing less regular solutions? Applying integration by parts to the right hand side of
the equation above, ∫

R
∂tuϕdx = −1

2

∫
R
u′·ϕ′ dx.

In this formulation, u only needs one derivative in L2(R, dx), which means u ∈ H1(R). Great
news for lowering regularity! In fact, the functional

E(u, v) :=
1

2

∫
R
u′·v′ dx, u, v ∈ H1(R)

happens to define a Dirichlet form ,.

Its precise definition when the underlying space is our locally compact separable metric measure
space (M,d, µ) will appear in Section 2.4. Before getting there, let us back up one step and talk
first about symmetric forms in L2(M,µ).

Definition 2.1.1. A symmetric form (E , D(E)) on L2(M,µ) is a densely defined, symmetric,
non-negative bilinear form, that is

10



Chapter 2. What is a Dirichlet form? 2.2. Symmetric forms and semigroups

(i) D(E) is dense in L2(M,µ) with respect to the L2-norm.

(ii) E(u, v) = E(v, u) for any u, v ∈ D(E).

(iii) E(u, u) ≥ 0 for all u ∈ D(E).

(iv) E(au+ bv, w) = aE(u, v) + E(v, w) for any u, v, w ∈ D(E) and a, b ∈ R.

Such a form is called closed if

‖u‖E1 :=
(
E(u, u) + ‖u‖2L2

)1/2
defines a norm in D(E) and (D(E), ‖ · ‖E1) is Hilbert.

Theorem 2.1.2. Let (E , D(E)) be a closed form on L2(M,µ), There exists a unique non-positive
densely defined self-adjoint operator L such that

D(L) = {u ∈ D(E) : ∃h ∈ L2(M,µ) s.t. E(u, v) = 〈h, v〉 ∀ v ∈ L2(M,µ)}.

In particular, for any u ∈ D(L),

E(u, v) = 〈−Lu, v〉 :=

∫
M
−Lu · v dµ ∀ v ∈ D(E).

Proof. The main idea consists in considering the bilinear forms

Eλ(u, u) = E(u, u) + λ〈u, v〉

and apply the Riesz representation theorem to construct a family of resolvents {Rλ}λ>0 whose
associated generator will be L. For more details see e.g. [8, Theorem 1.3.1(ii)].

2.2. Symmetric forms and semigroups

We have just learned from Theorem 2.1.2 that a closed form in L2(M,µ) “produces” a non-positive
definite self-adjoint operator (L,D(L)). In fact, by being self-adjoint, the operator is also closed,
see e.g. [5, Section 1.2]. Thinking back for a moment about the previous chapter and the Hille-
Yosida theorem...

... we realize that we actually know how to obtain a strongly continuous contraction semigroup
associated with (L,D(L))! Namely,

Ptu = etLu u ∈ L2(M,µ)

,. How about relating directly a semigroup {Pt}t≥0 with a symmetric form (E , D(E))?

Theorem 2.2.1. Let (E , D(E)) be a closed form on L2(M,µ) with associated generator (L,D(L)).
Then, there exists a strongly continuous contraction semigroup {Pt}t≥0 in L2(M,µ) with (L,D(L))
as infinitesimal generator that satisfies

D(E) = {u ∈ L2(M,µ) : E(u, u) <∞}

E(u, v) = lim
t→0

1

t
〈u− Ptu, v〉.

(2.2.1)

© Patricia Alonso Ruiz
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Proof. The main idea is to apply Hille-Yosida to the resolvent of L and use the spectral theorem
to prove the existence of the limit in (2.2.1). See e.g. [8, Lemma 1.3.4].

Thus far we have introduced what we are generically calling a “symmetric form” and you might
be wondering: Where are the Dirichlet forms? That question bring us to a crucial word in this
chapter: (being) Markov.

2.3. Markov processes and Markov semigroups

A deep result in the theory of Dirichlet forms is their connection to Markov processes and hence
to Markov semigroups. In this section we will review some basic termnology from the theory of
stochastic processes and explain how they link to semigroups.

To enter in the probabilistic setting we need a measurable space (Ω,F) consisting of a set Ω and
a σ-algebra F of Ω. This space contains “anything that may happen whose likelihood could be
measured”. A random variable is just a function X : Ω→M that is F-measurable.

Equipped with a probability measure P, the distribution of a random variable X : Ω → M is
the measure given by P(X−1(B)) =: P◦X−1(B) for any measurable set B ⊆ M . By a change of
variables, the expectation of any function u : M → R of a random variableX : Ω→M corresponds
to the integral

E[u(X)] :=

∫
Ω
u(X(ω)) dP(ω) =

∫
M
u(x) d(P◦X−1)(x). (2.3.1)

A stochastic process in (M,d, µ) is a family of random variables {Xt}t≥0. For each fixed ω ∈ Ω,
the map t 7→ Xt(ω) is called a path of Xt corresponding to ω. Fixing ω would be like fixing a
specific “universe”: randomness disappears and we are left with a (deterministic) function of time.
Note that the probability measure P plays no role here!

In the context of stochastic processes, the “overarching σ-algebra” F is usually equipped with a
filtration, that is a family of sub-σ-algebras {Ft}t≥0 with the property that

Ft ⊂ F ∀ t ≥ 0 and Fs ⊆ Ft ∀ 0 ≤ s ≤ t. (2.3.2)

A stochastic process {Xt}t≥0 is adapted to the filtration {Ft}t≥0 when Xt is Ft-measurable for
any t ≥ 0.

The last concept to introduce Markov processes is that of conditional expectation of a random
variable like Xt with respect to a (sub)-σ-algebra like Ft. That expectation is written E[Xt | Ft].
Despite the name and the notation, unlike (2.3.1), the conditional expectation is a random vari-
able. From an analytic point of view, this is the Radon-Nykodym derivative of the measure P◦X−1

and in particular ∫
A
X(ω) dP(ω) =

∫
A
E[Xt | Ft](ω) dP(ω)

for any A ∈ Ft.

All the previous concepts come together when defining a Markov process.

Definition 2.3.1. Let (Ω,F) be a measurable space, {Ft}t≥0 a filtration of F , and {Px}x∈M a
family of probability measures on (Ω,F). A Markov process (on (M,d, µ)) is a family of (M -
valued) random variables {Xt}t≥0 that satisfy

© Patricia Alonso Ruiz
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(i) {Xt}t≥0 is Ft-adapted, that is, for any t ≥ 0, Xt is Ft-measurable.

(ii) For any bounded measurable function u : M → R, 0 ≤ s ≤ t and x ∈M it holds that

Ex[u(Xt) | Fs] = Ex(u(Xt) |σ(Xs)], (2.3.3)

where σ(Xs) is the smallest σ-algebra with respect to which Xs is measurable, and Ex[·] denotes
the expectation with respect to the probability measure Px.

Observation 2.3.2. A stochastic process {Xt}t≥0 is always adapted to the filtration given by

Ft := σ
(
Xτ : τ ≤ t} t ≥ 0,

where Ft is the smallest σ-algebra with respect to which all random variables {Xτ}τ≤t are mea-
surable. The family {Ft}t≥0 builds what is called the natural filtration for the process {Xt}t≥0

taking as “overarching σ-algebra”
F :=

⋃
t≥0

Ft.

Definition 2.3.3. The transition kernel associated with a Markov process {Xt}t≥0 is the measure
given by

p(t, x,A) := Px(Xt ∈ A) t ≥ 0, x ∈M,A ∈ B(M).

In particular, p(0, x,M) = 1 for any x ∈M . In the context of general transition kernels, the latter
is referred to as the Markov property.

Theorem 2.3.4. Given a Markov process {Xt}t≥0 with transition kernel p(t, x, ·), the family of
operators defined as

Ptu(x) := Ex[u(Xt)] =

∫
M
u(y)p(t, x, dy) (2.3.4)

for any u ∈ L2(M,µ), is a contraction semigroup in L2(M,µ). If in addition

(i) p(t, x, dy) is symmetric, that is∫
M

∫
M
u(x)v(y)p(t, x, dy)dµ(x) =

∫
M

∫
M
v(x)u(y)p(t, x, dy)dµ(x) ∀u, v ∈ Cc(M),

(ii) there exists D ⊂ L2(M,µ) ∩ L1(M,µ) that is dense in L2(M,µ) for which

lim
t→0+

∫
M
u(y)p(t, x, dy) = u(x) µ-a.e. x ∈M,

then the semigroup {Pt}t≥0 in (2.3.4) is strongly continuous.

Proof. For the second statement see [21, Proposition 4.3].

Going the other way around, that is from a strongly continuous contraction semigroup to a Markov
process, we encounter the Markov property for semigroups.

Definition 2.3.5. A strongly continuous contraction semigroup {Pt}t≥0 in L2(M,µ) satisfies the
Markov property if for any u ∈ L2(M,µ) with 0 ≤ u ≤ 1 µ-a.e. also 0 ≤ Ptu ≤ 1 µ-a.e.

© Patricia Alonso Ruiz
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Theorem 2.3.6. Let {Pt}t≥0 be a strongly continuous contraction semigroup in L2(M,µ) that is
Markov. Then, there exists a Markov process {Xt}t≥0 whose finite-dimensional distributions are
uniquely determined by

Px(X0 ∈ A0, Xt1 ∈ A1, . . . , Xtn ∈ Atn)

=

∫
A0

· · ·
∫
An

p(tn − tn−1, yn−1, dyn) p(tn−1 − tn−2, yn−2, dyn−1) . . . p(t1, y0, dy1)p(0, x, y0),

where p(t, x, ·) is the transition kernel measure such that

Ptu(x) =

∫
M
u(y)p(t, x, dy) u ∈ L2(M,µ), µ-a.e. x ∈M. (2.3.5)

Observation 2.3.7. The observant reader may already notice that if the semigroup comes from
a heat kernel {pt}t≥0, that kernel is the density of the transition kernel measure in (2.3.5) with
respect to the underlying measure, i.e.

p(t, x, dy) = pt(x, y)dµ(y).

Proof of Theorem 2.3.6. The existence of the transition kernel p(t, x, dy) associated with {Pt}t≥0

follows from an application of the so-called “bi-measure theorem”; a detailed proof can be found
in [2, Proposition 1.2.3]. With the transition kernel on hand, since the underlying space M
is complete and separable, the existence of {Xt}t≥0 and its characterization through the finite-
dimensional distributions is a consequence of Kolmogorov’s theorem; see [7, Chapter 4, Theorem
1.1] and [3, p.16-17].

2.4. Markov semigroups and Dirichlet forms

In the previous section we have seen the Markov property for both stochastic processes and
semigroups. Anyone wondering if there is such a property also for symmetric forms (E , D(E)) in
L2(M,µ) will find the answer is yes, and that make it a Dirichlet form ,.

Definition 2.4.1. A symmetric form (E , D(E)) is said to be Markov if for any u ∈ D(E) the
function ũ := min{u+, 1} ∈ D(E) and E(ũ, ũ) ≤ E(u, u).

Et finalement...

Definition 2.4.2. A closed Markov symmetric form on L2(M,µ) is called a Dirichlet form.

In Theorem 2.2.1 we learned how to relate closed forms and strongly continuous contraction
semigroups via

E(u, v) = lim
t→0

1

t
〈u− Ptu, v〉.

The Markovian property will turn that statement into a relation between Markov semigroups and
Dirichlet form.

Theorem 2.4.3. A closed symmetric form (E , D(E)) on L2(M,µ) is Markov if and only if its
associated strongly continuous contraction semigroup {Pt}t≥0 is Markov.

© Patricia Alonso Ruiz
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Proof. We prove here explicitly that {Pt}t≥0 Markov implies (E , D(E)) is Markov, and refer the
reader to [] for the converse (longer) direction.

Assume that {Pt}t≥0 is Markov. Using the fact that the semigroup is conservative, i.e. Pt1 = 1,
and symmetric, for any u ∈ L2(M,µ) and t ≥ 0 we have

〈u− Ptu〉 =

∫
M
u2dµ−

∫
M
Ptu · u dµ

=

∫
M
P11u

2dµ−
∫
M
Ptu · u dµ

=

∫
M

∫
M
pt(x, y)u2(x) dµ(y) dµ(x)−

∫
M

∫
M
pt(x, y)u(y)u(x) dµ(y) dµ(x)

=
1

2

∫
M

∫
M
pt(x, y)u2(x) dµ(y) dµ(x) +

1

2
pt(x, y)u2(y) dµ(y) dµ(x)

−
∫
M

∫
M
pt(x, y)u(y)u(x) dµ(y) dµ(x)

=
1

2

∫
M

∫
M
pt(x, y)

(
u(x)− u(y)

)2
dµ(y)dµ(x).

Taking now ũ := min{u+, 1}, the latter computation implies

1

t
〈ũ− Ptũ〉 ≤

1

t
〈u− Ptu〉

for any t ≥ 0 and taking the limit as t→ 0 the Markovian property of (E , D(E)) follows.

2.5. Dirichlet forms and energy measures

Recall that Cc(M) denotes the space of continuous functions with compact support.

Definition 2.5.1. A Dirichlet form (E , D(E)) is regular if there exists C ⊂ Cc(M) ∩ D(E) such
that

(i) C is dense in Cc(M) with respect to the supremum norm,

(ii) C is dense in D(E) with respect to the norm

‖u‖E1 :=
(
E(u, u) + ‖u‖L2

)1/2
.

Theorem 2.5.2. Let (E , D(E)) be a regular Dirichlet form. For any u ∈ D(E) ∩ L∞(M) there
exists a unique Radon measure νu on M such that

E(u, v) =
1

2
E(u2, v) +

∫
M
v dνu ∀ v ∈ D(E) ∩ Cc(M). (2.5.1)

Proof. Fix u ∈ D(E) ∩ L∞(M) and define the functional

F : Cc(M) −→ R

v 7−→ E(v, uv)− 1

2
E(v, u2).

(2.5.2)

© Patricia Alonso Ruiz
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Because (E , D(E)) is bilinear, the functional F is linear. In addition, one can prove, see e.g. [8,
p.122] that it satisfies

0 ≤ F (v) ≤ ‖v‖L∞E(u, u)

and thus is in particular non-negative. By virtue of the Riesz-Markov-Kakutani representation
theorem, see e.g. [23, Theorem 2.14] there exists a unique Radon measure, which we denote νu
that satisfies (2.5.1).

The measure νu from Theorem 2.5.2 is also called the energy measure of u because it is often the
case that

νu(M) = 2E(u, u).

By polarization, energy measures give rise to the signed (!) Borel measure

νu,v =
1

2

(
νu+v − νu − νv

)
. (2.5.3)

The interested reader is may find more details about energy measures and their properties in [8,
Section 3.2].

One interesting geometric connection appears in [?], where energy measures are used to define an
intrinsic pseudo metric on the underlying space M by

dE(x, y) := sup
{
u(x)− u(y) : u ∈ D(E) ∩ Cc(M),

dνu
dµ
≤ 1
}
, (2.5.4)

where dνu
dµ denotes the Radon-Nykodym derivative of νu with respect to the underlying measure

µ. When existent, that derivative plays the role of the square of the length of the gradient and
corresponds to the an operator called Carré du champ. In fact, in the general context of metric
measure spaces equipped with a Dirichlet form, the existence (or non-existence) of this derivative
seems to be tightly connected with the Gaussian (or sub-Gaussian) nature of the associated heat
kernel.

Definition 2.5.3. Let (L,D(L)) be an operator in L2(M,µ) and let A ⊂ D(L) be a subspace
with the property that u·v ∈ A for any u, v ∈ A. The bilinear map

Γ(u, v) :=
1

2

(
L(u·v)− uLv − vLu

)
u, v ∈ A, (2.5.5)

is called the Carré du champ operator associated with (L,D(L)).

Proposition 2.5.4. Let (E , D(E)) be a regular Dirichlet form with infinitesimal generator (L,D(L)).
Further, let (Γ,A × A) be the Carré du champ operator associated with (L,D(L)). For any
u, v ∈ A ∩ L∞(M), Γ(u, v) is the Radon-Nykodym derivative of the measure νu,v with respect to
the underlying measure µ.

Proof. Let w ∈ A. On the one hand, applying the definition (2.5.5),∫
M
w Γ(u, v) dµ =

1

2
〈L(uv), w〉 − 1

2
〈uLv,w〉 − 1

2
〈vLu,w〉

=
1

2
〈L(uv), w〉 − 1

2
〈Lv,wu〉 − 1

2
〈Lu,wv〉

= −1

2
E(uv,w) +

1

2
E(v, wu) +

1

2
E(u,wv).
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On the other hand, by definition of the measure νu,v in (2.5.3),∫
M
w νu,v =

1

2

∫
M
w dνu+v −

1

2

∫
M
w dνu −

1

2

∫
M
w dνv

=
1

2
E(u+ v, (u+ v)w)− 1

4
E((u+ v)2, w)− 1

2
E(u, uw) +

1

4
E(u2, w)

− 1

2
E(v, wu) +

1

4
E(v2, w)

=
1

2
E(u, uw) +

1

2
E(u, vw) +

1

2
E(v, uw) +

1

2
E(v, vw)

− 1

4
E(u2, w)− 1

4
E(2uv,w)− 1

4
E(v2, w)

− 1

2
E(u, uw) +

1

4
E(u2, w)− 1

2
E(v, wv) +

1

4
E(v2, w)

=
1

2
E(u, vw) +

1

2
E(v, uw)− 1

2
E(uv,w).

Definition 2.5.5. A Dirichlet form (E , D(E)) is called strictly local if the topology generated by
the underlying measure µ is the same as the one generated by the pseudo metric dE .
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CHAPTER 3

What is the use?

While as passionate learner the process of learning new concepts brings me joy (most of the
time), I do need to find a personal motivation for learning them. Besides the fascination that
connections between different areas and fields (within and outside of mathematics) awake in me,
Dirichlet forms opened the door to the world of analysis and probability on fractals.

3.1. The heat equation on a fractal

In the previous chapters we have seen how the existence of a regular Dirichlet form (E , D(E))
on a given locally compact metric measure space (M,µ, d) renders the ability to formulate an
associated heat equation {

∂tu(t, x) = Lu(t, x), x ∈M
u(0, x) = u0(x),

(3.1.1)

where L is the infinitesimal generator associated with (E , D(E)), and whose solution may be
expressed in terms of an associated heat kernel pt(x, y) as

Ptu0(x) =

∫
M
u0(y) pt(x, y) dµ(y).

We have also learned that, alternatively we may write (3.1.1) weakly as{
〈∂tu, ϕ〉 = −E(u, ϕ), ∀ϕ ∈ Cc(M)

u(0, x) = u0(x) µ-a.e. x ∈M,

It may look like we can do this in any locally compact metric measure space (M,µ, d), however
there is a fundamental question lying on the background, namely:

Is there a “natural” Markov process/Dirichlet form/Semigroup
associated with a space (M,µ, d)?

18
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Not a trivial question, indeed. On fractals, answers started to appear in the late 80s with break-
through probabilistic works on the Sierpinski gasket by Kusuoka [18] and Goldstein [9], on pla-
nar nested fractals by Lindstøm [20]. Pioneers in the analytic approach were Kigami [14] and
Kusuoka [19], whose constructions applied to so-called post-critically finite self-similar sets. Con-
structions expanded to the Sierpinski carpet in a series of works by Barlow-Bass []. These were
based on graph approximations of the (fractal) underlying space.

The following sections are meant to give context and provide overview of a particular method
to construct Dirichlet forms in a family of metric measure spaces often called Cheeger spaces,
which need not be approximated by a graph. Originally developed by Kumagai-Sturm in [17],
my collaborator Fabrice Baudoin and I revisited this method in [1] to strengthen the probabilistic
implications of their earlier results.

3.2. Lip-Poincaré inequalities

The underlying metric measure space (M,d, µ) will be a compact Cheeger space. To describe the
latter we first need to talk briefly about Lipschitz functions and Poincaré inequalities. For more
details we refer to [12, Chapter 6].

Definition 3.2.1. A function u : M → R is CL-Lipschitz if there exists a constant CL > 0 such
that

|u(x)− u(y)| ≤ CLd(x, y)

for any x, y ∈M . The Lipschitz constant of a Lipschitz function u is

(Lipu)(y) := lim sup
r→0+

sup
x∈M,d(x,y)≤r

|u(x)− u(y)|
r

.

We will denote the subspace of Lipschitz functions on M by Lip(M).

Definition 3.2.2. A metric measure space (M,d, µ) supports a (p, p)-Poincaré inequality with
respect to Lipschitz functions if there exist constants C > 0 and λ > 1 such that∫

B

∣∣∣u−−∫
B
u dµ

∣∣∣pdµ ≤ C(diamB)p
∫
λB

(Lipu)pdµ

for any ball B ⊂M and any u ∈ Lip(M). Here, −
∫
B u dµ := 1

µ(B)

∫
B u dµ.

To some extent, the scaling power p of the diameter is characteristic of this kind of spaces.

Definition 3.2.3. A locally compact metric measure space (M,d, µ) is called a Cheeger space if
the following three properties are satisfied:

(i) The measure µ is a Radon measure, i.e., it is finite on compact sets, outer regular on Borel
sets and inner regular on open sets.

(ii) The measure µ is doubling, i.e., the volume of a ball is bounded by the volume of a ball half
its radius independently of the size of the radius. In other words, there exists a constant C > 0
such that for any x ∈M and R > 0,

µ(B(x, 2R)) ≤ Cµ(B(x,R)). (3.2.1)

© Patricia Alonso Ruiz
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(iii) The space satisfies a (2, 2)-Poincaré inequality with respect to Lipschitz constants.

Remark 3.2.4. In the context of Cheeger spaces, the Lipschitz constant in the (2, 2)-Poincaré
inequality may equivalently be replaced by the weak upper gradient the function, i.e. to the
inequality ∫

B
|u− uB|pdµ ≤ C(diamB)p

∫
λB

(gu)2dµ,

c.f. [13, Theorem 8.4.2].

3.3. Mosco and Γ-convergence

The idea behind this way of constructing a “natural” or intrinsic Dirichlet form is to mimic a
possible “natural” approximation of the underlying metric measure space (M,d, µ): If there is
a sequence of meaningful approximations (Mn, dn, µn) and one can construct in each of them a
“natural” (Dirichlet) form, a natural candidate for a (Dirichlet) form in the limit should also be
some sort of limit of forms.

What kind of limit?

This is what this section is about. There are two main convergence modes that involve functionals
like Dirichlet forms: (de Giorgi) Γ-convergence and Mosco convergence. While the definitions
presented here are for L2-functionals, they are also meaningful in more general settings, see [6,22]
and also [1].

We start with the older and weaker type of convergence, which is a standard took in calculus of
variations.

Definition 3.3.1 (Γ-convergence). A sequence of functionals {En : L2(M,µ)→ R}n≥1 is said to
Γ-converge to a functional E : L2(M,µ)→ R if

(i) For any sequence {un}n≥1 ⊂ L2(M,µ) that converges strongly to u ∈ L2(X,µ) in L2(M,µ),

lim inf
n→∞

En(un, un) ≥ E(u, u).

(ii) For any u ∈ L2(M,µ) there exists a sequence {un}n≥1 ⊂ L2(X,µ) that converges strongly to
u in L2(M,µ) and

lim sup
n→∞

En(un, un) ≤ E(u, u).

In the context of Dirichlet forms, the stronger Mosco convergence mode became especially useful
due to its implications in convergence of semigroups, resolvents and spectral families associated
with the corresponding forms [22, Section 2]. The following definition, see [1], is a natural extension
of Mosco’s original definition to the functional setting.

Definition 3.3.2 (Mosco convergence). A sequence of functionals {En : L2(M,µ) → R}n≥1 is
said to Mosco-converge to a functional E : L2(M,µ)→ R if

(i) For any sequence {un}n≥1 ⊂ L2(M,µ) that converges weakly to u ∈ L2(X,µ) in L2(X,µ),

lim inf
n→∞

En(un, un) ≥ E(u, u).
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(ii) For any u ∈ L2(M,µ) there exists a sequence {un}n≥1 ⊂ L2(M,µ) that converges strongly to
u in L2(M,µ) and

lim sup
n→∞

En(un, un) ≤ E(u, u).

In both cases, the domain of the limiting form E is

D(E) :=
{
u ∈ L2(M,µ), E(u, u) < +∞

}
.

3.4. Korevaar-Schoen energy functionals

Why “Korevaar-Schoen”? Because of a seminal paper by these authors [15], where they developed
a general theory of Sobolev spaces and harmonic maps between Riemannian manifolds based on
the following type of functional.

Definition 3.4.1. For any r > 0, a Korevaar-Schoen energy functional is a functionalEr : L2(M,µ)→
R of the form

Er(f) :=
1

r2
−
∫
B(x,r)

|u(x)− u(y)|2dµ(y) dµ(x).

In the same spirit as the work by Korecaar and Schoen, these functionals have been studied in
Cheeger spaces and compared with so-called Neutonian Sobolev spaces based on upper gradients.
In particular, see [16], the Neutonian space N1,2(M) coincides with the Korevaar-Schoen space

KS1,2(M) :=
{
u ∈ L2(M,µ) : sup

r>0
Er(u) <∞

}
,

and
sup
r>0

Er(u) ' ‖gu‖L2

for any u ∈ N1,2(M).

3.5. Construction of Dirichlet forms

Lipschitz functions play a fundamental role in the structure of Cheeger spaces (M,d, µ) by con-
necting the geometry and the analysis on them. Indeed, the doubling property (3.2.1) implies
the existence of a maximally separated ε-covering {B(xi, ε)}i≥1 of M with the bounded overlap
property and a subordinated Lipschitz partition of unity {ϕεi}i≥1. The interested reader may find
in [13, pp. 102-104] a detailed account of these results. That covering and partition are key in
proving the existence of a “natural” Dirichlet form on a Cheeger space (M,d, µ).

The Dirichlet form that will be constructed is strictly local, which means that the topology gen-
erated by the metric d is the same as the topology generated by the metric

dE(x, y) := sup{u(x)− u(y) : u ∈ D(E) ∩ Cc(M) and dΓ(u, u)� dµ}.

Theorem 3.5.1. On a compact Cheeger space (M,d, µ) there exists a strictly local and regular
Dirchlet form (E , D(E)) that is the Mosco limit of the Korevaar-Schoen type energies

Ern(u) :=
1

r2
n

−
∫
B(x,rn)

|u(x)− u(y)|2dµ(y) dµ(x),

where rn → 0 is independent of u.
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Proof. Here we summarize the strategy and main ideas of the proof ideas and refer to [1] for
rigorous arguments.

1. Show that there exists a constant C > 0 such that for any u ∈ L2(M,µ) and un
L2

−−−→
n→∞

u

sup
r>0

Er(u) ≤ C lim inf
n→∞

Ern(un), (3.5.1)

where rn → 0 is independent of C and u. The proof of (3.5.1) relies on approximations by
Lipschitz functions: Any un ∈ L2(M,µ) is approximated by

un,ε =
∑
i≥0

−
∫
B(xi,ε)

un dµϕ
ε
i .

Applying the (2, 2)-Poincaré inequality, the Lipschitz continuity of ϕεi and the bounded overlap
property of the ε-covering one proves∫

X
(Lipun,ε)

2dµ ≤ C 1

ε2

∫
M
−
∫
B(x,2ε

|un(x)− un(y)|2dµ(y) dµ(x).

The latter is used to prove that for any r > 0

Er(un,εn) ≤ C lim inf
n→∞

Eεn(un).

2. The existence of a Γ-limit follows from a general result form Γ-convergence, which states that
any sequence of functionals {Ern}n≥0 contains a Γ-convergent subsequence [4, Theorem 8.5]. The
form (E , D(E)) is defined to be the Γ-limit of that subsequence.

3. Upgrading Γ-convergence to Mosco convergence is possible when the underlying space is com-
pact due to a result by Mosco [22] once one proves that the (sub-)sequence {Ern}n≥0 is asymp-
totically compact, that is for any sequence {un}n≥1 ⊂ L2(M,µ) for which

lim inf
n→∞

(
Ern(un) + ‖un‖2L2

)
<∞

has a subsequence that converges strongly in L2. That result is classically called Rellich-Kondrachov
and was proved in the Cheeger setting in [11, Theorem 8.1].
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