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CHAPTER 1

Semigroups, generators and Markov processes

Notation

Let us start with some notation that will be used throughout the chapter.

◦ (M,d) is a metric space, B(M) its Borel σ-algebra;

◦ B := B(M,R) is the Banach space of bounded measurable functions f : M → R
with the supremum norm

∥f∥ := sup
x∈M

|f(x)|;

◦ B∗ is the dual of B, i.e. bounded linear functionals F : B → R with

∥F∥ := sup
∥f∥=1

|F (f)|;

◦ Cb(M) is the Banach space of bounded continuous functions f ∈ B with the
supremum norm ∥f∥;

◦ For (M,d) is locally compact and separable, C0(M) denotes the Banach space of
bounded continuous functions f ∈ B that “vanish at infinity”, i.e.

∀ ε > 0there exists K ⊂M compact such that |f(x)| < ε ∀x ∈M \K.

In addition the following convergence types will appear:

◦ For a sequence {fn}n≥1 ⊂ B and f ∈ B:
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1.1. CONTRACTIVE SEMIGROUPS CHAPTER 1. SGS, IGS, MPS

- Strong convergence: fn
s−→ f means ∥fn− f∥ n→∞−−−→ 0 and may also be written

as f = s− lim
n→∞

fn;

- Weak convergence: fn
w−→ f means |F (fn)− F (f)| n→∞−−−→ 0 for all F ∈ B∗ and

may also be written as f = w− lim
n→∞

fn.

◦ For a sequence {Qn}n≥1 of bounded linear operators on B and a bounded linear
operator Q on B:

- Uniform convergence: Qn
u−→ Q means ∥Qn −Q∥ n→∞−−−→ 0;

- Strong convergence: Qn
s−→ Q means ∥Qnf −Qf∥ n→∞−−−→ 0 for all f ∈ B;

- Weak convergence: Qn
w−→ Q means |F (Qnf)−F (Qf)|

n→∞−−−→ 0 for all F ∈ B∗

and f ∈ B.

1.1. Contractive semigroups

We start with the basic property that defines a semigroup.

Definition 1.1.1. (i) A family of bounded linear operators {Pt}t≥0 on B is called
a semigroup if

P0 = Id and Ps+t = PsPt ∀ s, t ≥ 0.

(ii) A semigroup {Pt}t≥0 is called contractive if

∥Pt∥ ≤ 1 ∀ t ≥ 0.

Definition 1.1.2. The domain of strong continuity of a contractive semigroup
{Pt}t≥0 on B is defined as

B0 := {f ∈ B : lim
t→0+

∥Ptf − f∥ = 0}.

If B = B0, then the semigroup is said to be strongly continuous.

The domain B0 enjoys several useful properties.

Lemma 1.1.3. Let {Pt}t≥0 be a contractive semigroup on B. Then,

(i) B0 is a Banach space.

(ii) For any t ≥ 0, PtB0 ⊆ B0.

(iii) f ∈ B0 if and only if Pt+hf
s−−−−→

h→0+
Ptf for all t ≥ 0.

The characterization (iii) is useful to check whether B = B0.
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1.1. CONTRACTIVE SEMIGROUPS CHAPTER 1. SGS, IGS, MPS

Proof. (i) B0 is a vector space (HW). To see B0 is closed, let {fn}n≥0 ⊂ B0 such

that fn
s−→ f ∈ B. We want to show that f ∈ B0, i.e. limt→0+ ∥Ptf − f∥ = 0.

Applying the triangle inequality and using the contractive property of Pt,

∥Ptf − f∥ ≤ ∥Ptf − Ptfn∥+ ∥Ptfn − fn∥+ ∥fn − f∥
≤ ∥Pt∥∥f − fn∥+ ∥Ptfn − fn∥+ ∥fn − f∥

≤ 2∥f − fn∥+ ∥Ptfn − fn∥
n→∞−−−→
t→0+

0

(ii) Let f ∈ B0 and t ≥ 0. We want to prove limh→0+ ∥PhPtf − Ptf∥ = 0. By
virtue of the semigroup property and its contractivity,

∥PhPtf − Ptf∥ = ∥Ph+tf − Ptf∥ = ∥Pt(Phf − f)∥ ≤ ∥Pt∥∥Phf − f∥ ≤ ∥Phf − f∥.

Thus, lim suph→0+ ∥PhPt − Ptf∥ = 0 and Ptf ∈ B0.

(iii) ⇒) follows from the computation above in (ii), ⇐) follows by setting t = 0.

Where does one find semigroups? We will come back to this first example later!

Example 1.1.4. Let B = Cb(Z), λ > 0 and define for any t ≥ 0

Ptf(x) :=
∞∑
k=0

f(x+ k)
(λt)k

k!
e−λt.

{Pt}t≥0 is a strongly continuous contractive semigroup.

- Well-defined and contractive: Using the series expression of the exponential func-
tion eλt,

∥Ptf∥ ≤ ∥f∥
∑
k=0

(λt)k

k!
e−λt = ∥f∥.

- Semigroup property: HW (algebra manipulations with the exponential series).

- Strong continuity:

∥Ptf − f∥ = sup
x∈Z

∣∣∣ ∞∑
k=0

f(x+ k)
(λt)k

k!
e−λt − f(x)

∣∣∣
= sup

x∈Z

∣∣∣ ∞∑
k=1

f(x+ k)
(λt)k

k!
e−λt+f(x)e−λt − f(x)

∣∣∣
≤ ∥f∥

∞∑
k=1

(λt)k

k!
e−λt + (1− e−λt)∥f∥ = 2(1− e−λt)∥f∥ t→0+−−−→ 0.

© Patricia Alonso Ruiz 3



1.1. CONTRACTIVE SEMIGROUPS CHAPTER 1. SGS, IGS, MPS

In general one can think of the semigroup property as somewhat being ‘of exponen-
tial type’. This fact is reinforced by the next example.

Example 1.1.5. Let L : B → B be a bounded linear operator and define for any
t ≥ 0

Pt := etL :=
∞∑
k=0

tk

k!
Lk.

This is a strongly continuous semigroup.

- Well-defined: For any n ≥ 1,∥∥∥ n∑
k=0

tk

k!
Lk
∥∥∥ ≤

∞∑
k=0

tk

k!
∥Lk∥ ≤

∞∑
k=0

tk

k!
∥L∥k ≤ et∥L∥ <∞.

- Semigroup: (HW)

- Strong continuity:

∥Pt − Id∥ =
∥∥∥ ∞∑
k=1

tk

k!
Lk
∥∥∥ ≤

∞∑
k=1

tk

k!
∥L∥k = et∥L∥ − 1

t→0+−−−→ 0.

One of the most relevant examples is the semigroup associated with Brownian mo-
tion on Rd.

Exercise 1.1.6. Let B = Cb(Rn) and define for any t ≥ 0

Ptf(x) :=

∫
Rn

1

(2πt)n/2
e−

∥x−y∥2
4t f(y) dy.

This is a continuous contractive semigroup.

We finish this first section with an a priori bound that puts again relevance in the
exponential flavor of the semigroup property.

Lemma 1.1.7. Let {Pt}t≥0 be a strongly continuous semigroup on B. There exists
M ≥ 1 and r ≥ 0 such that

∥Pt∥ ≤Mert ∀ t ≥ 0.

Proof. Assume first that there exists M ≥ 1 such that ∥Pt∥ ≤M for any 0 ≤ t ≤ t0
and some fixed t0 > 0.
For any t ≥ 0 we write now t = kt0 + s with 0 ≤ s < t0 and 0 ≤ k ∈ Z.
Choosing r = 1

t0
logM > 0 we obtain from the semigroup property and our current

assumption

∥Pt∥ = ∥Pkt0+s∥ = ∥Pkt0Ps∥ ≤ ∥Pkt0∥∥Ps∥ ≤ ∥P kt0∥M

© Patricia Alonso Ruiz 4



1.2. INFINITESIMAL GENERATORS CHAPTER 1. SGS, IGS, MPS

≤ ∥Pt0∥kM ≤MkM = erkt0M ≤Mert.

To prove the initial assumption we argue by contradiction: Suppose that there is
no such t0 > 0. Then, sup0<s≤t0 ∥Ps∥ = ∞. By Banach-Steinhaus theorem, there
exists f ∈ B such that sup0≤s≤t0 ∥Psf∥ = ∞ which contradicts the strong continuity
of the semigroup.

1.2. Infinitesimal Generators

We start this section by recalling some differentiation/integration properties of
Banach space-valued functions. For a strongly continuous contractive semigroup
{Pt}t≥0 on B we define

◦ Differentiation:
d

ds
Psf := lim

h→0

1

h
(Ps+hf − Psf) for any f ∈ B.

◦ Integration: For 0 ≤ a < b < ∞ and consider a partition of [a, b] given by
a = t0 < t1 < . . . < tn = b so that max

1≤k<n
|tk − tk−1|

n→∞−−−→ 0. For any f ∈ B, we

define ∫ a

b
Psfds := s− lim

n→∞

n∑
k=1

Pskf(tk − tk−1),

where sk ∈ [tk, tk−1] for every k, n.

We first state some useful properties of differentiation and integration for strongly
continuous semigroup on B without proof.

Lemma 1.2.1. Let {Pt}t≤0 be a strongly continuous semigroup on B, then

(i)
∥∥∫ a

b Psfds
∥∥ ≤

∫ a
b ∥Psf∥ds, for all f ∈ B and s ≥ 0.

(ii) s−limh→0
1
h

∫ t+h
t Psfds = Ptf , for all f ∈ B and t ≥ 0.

(iii) Pt

(∫ b
a Psfds

)
=
∫ b
a Pt+sfds =

∫ b+t
a+t Psfds, for all f ∈ B, 0 ≤ a < b < ∞ and

t ≥ 0.

(iv)
∫ a
b

d
dsPsfds = Pbf − Paf , for all f ∈ B, 0 ≤ a < b <∞ and s ≥ 0.

We also introduce the main object we are going to study in this section.

Definition 1.2.2. The infinitesimal generator of a strongly continuous semigroup
{Pt}t≥0 on B is the linear operator

Lf := s− lim
t→0+

1

t
(Ptf − f). (1.2.1)

We denote the domain of L by

D(L) = {f ∈ B, the limit in (1.2.1) exists}.

© Patricia Alonso Ruiz 5



1.2. INFINITESIMAL GENERATORS CHAPTER 1. SGS, IGS, MPS

We will refer to the infinitesimal generator L as ”Laplacian”, since as we will see
in the next Theorem, it satisfies the Heat equation (in (ii)).

Theorem 1.2.3. Let L : D(L) → B be the infinitesimal generator of a strongly
continuous contractive semigroup {Pt}t≥0, then

(i) D(L) = B0 and L(D(L)) ⊂ B0. In particular for all f ∈ B0 and t ≥ 0, we have∫ t

0
Psfds ∈ D(L) (1.2.2)

and

Ptf − f = L

(∫ t

0
Psfds

)
. (1.2.3)

(ii) For any f ∈ D(L), we have Ptf ∈ D(L) and

d

dt
Ptf = LPtf = PtLf. (1.2.4)

In particular

Ptf − f =

∫ t

0
LPsfds =

∫ t

0
PsLfds. (1.2.5)

(iii) L is closed.

Proof. (i) D(L) = B0 : We prove this in 2 steps: first prove that D(L) ⊂ B0 then
B0 ⊂ D(L).

Given ϵ > 0 and f ∈ D(L), then by definition for any ε̃ > 0 the exists a t̃0 > 0 such
that ∥Lf − 1

t (Ptf − f)∥ < ε̃ for all t ≤ t̃0. Then by inserting Lf and 1
t̃0
(Pt̃0f − f),

we have

∥Ptf − f∥ = t∥1
t
(Ptf − f)− Lf + Lf − 1

t̃0
(Pt̃0f − f) +

1

t̃0
(Pt̃0f − f)∥

≤ t∥1
t
(Ptf − f)− Lf∥+ t∥Lf − 1

t̃0
(Pt̃0f − f)∥+ t∥ 1

t̃0
(Pt̃0f − f)∥

≤ t

(
ε̃+ ε̃+

1

t̃0
(∥Pt̃0∥ · ∥f∥+ ∥f∥

)
≤ 2t

(
ε̃+

1

t̃0
∥f∥

)
,

where we use contractivity of {Pt} at the last line. Then by choosing

t0 = min{t̃0,
ε

ε̃+ 1
t̃0
∥f∥

}, we have ∥Ptf − f∥ < ε.

To prove the second part, we first observe that, by Lemma 1.2.1 (ii), (iii),

© Patricia Alonso Ruiz 6



1.2. INFINITESIMAL GENERATORS CHAPTER 1. SGS, IGS, MPS

Ptf − f = Ptf − P0f

= s− lim
h→0

1

h

[∫ t+h

t
Psfds−

∫ h

0
Psfds

]
= s− lim

h→0

1

h

[∫ t+h

h
Psfds−

∫ t

0
Psfds

]
(insert

∫ t

h
Psfds)

= s− lim
h→0

1

h

[∫ t

0
Ph+sfds−

∫ t

0
Psfds

]
= s− lim

h→0

1

h
(Ph − I)

[∫ t

0
Psfds

]
= L

∫ t

0
Psfds.

Since the equality holds for all fixed t, we see that limit in the second last line exists
and last line follows by definition of L, which proves (1.2.2) and implies (1.2.3) and

B0 ⊂ D(L) by choosing the sequence {fn} = {n
∫ 1/n
0 Psfds} ⊂ D(L).

Next if f ∈ D(L) ⊂ B0, then, by Lemma 1.1.3, since 1
t (Ptf − f) ∈ B0 and B0 is

complete, we have Lf ∈ B0.

(ii) Second equality of (1.2.4) follows from continuity of {Pt}. To prove the first
equality, we notice that one side of the limit follows by definition of L, namely

s− lim
h→0+

1

h
(PhPtf − Ptf) = LPtf,

since Ptf ∈ D(L). For the other side, by replacing h by −h, we have

s− lim
h→0−

1

h
(Pt+hf − Ptf) = s− lim

h→0+

1

h
(Ptf − Pt−hf).

Then ∥∥1
h
(Ptf − Pt−hf)− LPtf

∥∥
=
∥∥1
h
(Pt−hPhf − Pt−hf)− PtLf

∥∥ (second equality of (1.2.4))

≤
∥∥Pt−h∥∥∥∥1

h
(Phf − f)− PhLf

∥∥
≤
∥∥1
h
(Phf − f)− Lf

∥∥+ ∥∥Lf − PhLf
∥∥ (∥Pt−h∥ ≤ 1)

h→0+−−−−→ 0 + 0,

where the last line follows by definition of L and strong continuity of Pt. This
proves (1.2.4).
By Lemma 1.2.1 (iii), definition of L and (1.2.3), we have

© Patricia Alonso Ruiz 7



1.2. INFINITESIMAL GENERATORS CHAPTER 1. SGS, IGS, MPS

∥∥∥∥Ptf − f −
∫ t

0
LPsfds

∥∥∥∥
≤
∥∥∥∥Ptf − f − 1

h
(Ph − I)

∫ t

0
Psfds

∥∥∥∥ (vanishes in limit by (1.2.3))

+

∥∥∥∥1h(Ph − I)

∫ t

0
Psfds−

∫ t

0
LPsfds

∥∥∥∥
≤
∥∥∥∥∫ t

0
Ps(

1

h
(Ph − I)f − Lf)ds

∥∥∥∥+O(h) (by Lemma 1.2.1 (iii) and (1.2.3))

≤
∫ t

0
∥1
h
(Ph − I)f − Lf∥ds+O(h)

h→0+−−−−→ 0, (by definition of L)

which proves the first equality of (1.2.5). Second equality follows by second equality
of (1.2.4).

(iii) To prove that L is closed, assuming that {fn} ⊂ D(L), such that fn
s−→ f and

Lfn
s−→ g for some f, g ∈ B, we want to prove Lf = g.

First observe that∥∥∥∥Phf − f −
∫ h

0
Psgds

∥∥∥∥
≤
∥∥∥∥Ph(f − fn) + (Phfn − fn) + (fn − f)−

∫ h

0
Psgds

∥∥∥∥
≤ (∥Ph∥+ 1)∥f − fn∥+

∥∥∥∥Phfn − fn −
∫ h

0
Psgds

∥∥∥∥
≤ 2∥f − fn∥+

∥∥∥∥Phfn − fn −
∫ h

0
Psgds

∥∥∥∥
= 2∥f − fn∥+

∥∥∥∥∫ h

0
PsLfnds−

∫ h

0
Psgds

∥∥∥∥ (by (1.2.5))

≤ 2∥f − fn∥+
∫ h

0
∥Ps∥∥Lfn − g∥ds

n→∞−−−→ 0 + 0. (since fn
s−→ f and Lfn

s−→ g)

Then by Lemma 1.2.1 (ii) and definition of L,

g = s− lim
h→0+

1

h

∫ h

0
Psgds = s− lim

h→0+

1

h
(Phf − f) = Lf.

Hence L is closed.

© Patricia Alonso Ruiz 8
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Example 1.2.4. Let A be a linear bounded operator on B and define {Pt} as

Pt = etA =
∞∑
k=0

tk

k!A
k. Let’s find out the infinitesimal operator through a priori

calculation.

∥1
t
(Pt − I)− L∥

= ∥1
t

∞∑
k=1

tk

k!
Ak − L∥ = ∥A+

1

t

∞∑
k=2

tk

k!
Ak − L∥

≤ 1

t

∞∑
k=2

tk

k!
∥A∥k + ∥A− L∥

≤ 1

t
(et∥A∥ − 1− t∥A∥) + ∥A− L∥,

where the first term in the last line vanishes as t → 0+ so if we choose L = A we
have L = s− lim

t→0+
1
t (Pt − I) = A.

Example 1.2.5. Let B = Cb(Z) and, for f ∈ B and λ > 0, define {Pt} by

Ptf(x) =
∞∑
k=0

f(x+ k)
(λt)k

k!
e−λt.

We showed in Example 1.1.4 that this is a strongly continuous contractive semi-
group. To find the infinitesimal operator, as in the previous example, we first do a
priori calculation. For f ∈ B,

sup
x∈Z

∣∣∣∣1t (Ptf(x)− f(x))− Lf(x)

∣∣∣∣
= sup

x∈Z

∣∣∣∣∣1t
(
f(x)e−λt + f(x+ 1)(λt)e−λt +

∞∑
k=2

f(x+ k)
(λt)k

k!
e−λt − f(x)

)
− Lf(x)

∣∣∣∣∣
= sup

x∈Z

∣∣∣∣∣1t
∞∑
k=2

f(x+ k)
(λt)k

k!
e−λt + f(x)

e−λt − 1

t
+ f(x+ 1)λe−λt − Lf(x)

∣∣∣∣∣
≤ 1

t
(e−λt − 1− λt)∥f∥+ sup

x∈Z

∣∣∣∣f(x)e−λt − 1

t
+ f(x+ 1)λe−λt − Lf(x)

∣∣∣∣ ,
in which the first term vanishes as t→ 0+ just as before. For the second term, since
the limit

Lf(x) = lim
t→0+

f(x)
e−λt − 1

t
+ f(x+ 1)λe−λt = −λf(x) + λf(x+ 1)

exists. We have L = −λI+λT , where I is identity operator and T is the right shift
operator (Tf(x) = f(x+ 1)).

© Patricia Alonso Ruiz 9
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Example 1.2.6. Let B = C0(Rn) and for f ∈ B define {PBMt } by

PBMt f(x) =

∫
Rn

1

(4πt)n/2
e

−|x−y|2
4t f(y)dy,

which forms strongly continuous contractive semigroup on B. Then after some
complicated calculation you can show that for f ∈ C2

0 (Rn)

1

t
(PBMt f(x)− f(x)) =

n∑
i=1

∂2i f(x) +
n∑

i,j=1

Rij(x, t),

where Rij are remainder terms that converges to zero as t → 0 uniformly in x.
Then by density of C2

0 (Rn) in C0(Rn), we see that L is Laplacian ∆ =
∑n

i=1 ∂
2
i .

Note that {PBMt } is not strongly continuous if we take B = Cb(Rn), for they are
not even weakly continuous in Cb(Rn).

1.3. Resolvent

Definition 1.3.1. Let A : B → B be a closed operator.

(i) The resolvent set of A is the subset of R defined as

ρ(A) := {λ ∈ R : (λI −A)−1 is a bounded operator}.

(ii) The spectrum of A is the closed set

σ(A) := R\ρ(A).

Strictly speaking, when we say A : B → B is a closed operator, we actually mean
A : D(A) ⊂ B → B is closed, i.e. if {fn} ⊂ D(A), with fn

n→∞−−−→ f ∈ D(A) and
Afn

n→∞−−−→ g, then Af = g.

Observation 1.3.2. For A : B → B linear operator (not necessarily closed), we
can define the resolvent by

{λ ∈ R : (λI −A) bijective, (λI −A)−1 continuous on B and D((λI −A)−1) = B}.

Moreover, if ρ(A) ̸= ∅ then A is closed. The resolvent set is open if A closed (HW).

Definition 1.3.3. Let A : B → B be a closed operator. For each λ > 0, the
operator Rλ := (λI −A)−1 is called the resolvent of A (at λ).

Lemma 1.3.4. Let A : B → B be a closed operator.

(i) Rλ −Rµ = (µ− λ)RλRµ (Resolvent Identity).
In particular, RλRµ = RµRλ.

© Patricia Alonso Ruiz 10



1.3. RESOLVENT CHAPTER 1. SGS, IGS, MPS

(ii) For every λ, µ ∈ ρ(A), RλB = RµB = D(A).

(iii) If (0,∞) ⊂ ρ(A) and ∥λRλ∥ ≤ 1 ∀λ > 0, then

RλB = {f ∈ B : ∥λRλf − f∥ λ→∞−−−→ 0}.

Proof. (i) We have

Rλ = RλR
−1
µ Rµ = Rλ(µI −A)Rµ = Rλ((µ− λ)I + λI −A)Rµ

= Rλ((µ− λ)I +R−1
λ )Rµ = (µ− λ)RλRµ +Rµ,

which gives us the result. In particular, using this identity for µ ̸= λ we get

RλRµ = (µ− λ)−1(Rλ −Rµ) = (λ− µ)−1(Rµ −Rλ) = RµRλ,

where the second equality follows by interchanging the roles of µ and λ.

(ii) We show first that RλB = RµB. Notice that it is enough to show RλB ⊂ RµB,
since by interchanging the roles of µ and λ, we get RµB ⊂ RλB. To see this, let
f ∈ RλB, i.e. f = Rλg for some g ∈ B. We want f = Rµh for some h ∈ B. Using
the Resolvent Identity, we can write

f = Rλg = (µ− λ)RλRµg +Rµg = Rµ((µ− λ)Rλg + g) = Rµh,

for h = (µ− λ)Rλg + g.

To show RλB ⊂ D(A), let f = Rλg for some g ∈ B. Then,

Af = (A− λI)f + λIf = R−1
λ f + λIf = g + λRλg ∈ B.

For the reverse inclusion, D(A) ⊂ RλB, let f ∈ D(A). We want f = Rλg for some
g ∈ B. We have

f = RλR
−1
λ f = Rλ(λI −A)f = Rλg,

where g = (λI −A)f ∈ B.

(iii) We first show that RλB ⊂ {f ∈ B : ∥λRλf − f∥ λ→∞−−−→ 0}. Let f = Rλg for
some g ∈ B. Let also µ > λ. Then, using the resolvent identity, we have

µRµf − f = µRµRλg −Rλg =
µ

λ− µ
(Rµg −Rλg)−Rλg

=
λ

µ− λ
Rλg −

µ

µ− λ
Rµg.

Therefore, since ∥λRλ∥ ≤ 1, ∀λ > 0

∥µRµf − f∥ ≤ 1

µ− λ
∥λRλg∥+

1

µ− λ
∥µRµg∥ ≤ 2

1

µ− λ
∥g∥
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So, taking lim sup in both sides, we have

lim sup
µ→∞

∥µRµf − f∥ ≤ lim sup
µ→∞

2

µ− λ
∥g∥ = 0,

and we get the result.

To show that RλB ⊂ {f ∈ B : ∥λRλf − f∥ λ→∞−−−→ 0}, let {fn}n≥1 ⊂ RλB such that

∥fn − f∥ n→∞−−−→ 0. Then, using the assumption that ∥λRλ∥ ≤ 1, ∀λ > 0, we have

∥λRλf − f∥ ≤ ∥λRλf − λRλfn∥+ ∥λRλfn − fn∥+ ∥fn − f∥
≤ ∥λRλ∥∥f − ffn∥+ ∥λRλfn − fn∥+ ∥fn − f∥
≤ 2∥f − fn∥+ ∥+ ∥λRλfn − fn∥

which goes to zero as λ→ ∞ and n→ ∞ and we get the result.

Definition 1.3.5. Let {Pt}t≥0 be a contractive semigroup on B with infinitesimal
generator L. We define the resolvent of {Pt}t≥0 on B0 to be the resolvent of L.

Theorem 1.3.6. Let {Pt}t≥0 be a contractive semigroup on B with infinitesimal
generator L. Then,

(i) The resolvent of {Pt}t≥0 exists for any λ > 0, and equals

Rλf =

∫ ∞

0
e−λsPsf ds =: Lλf, ∀f ∈ B.

(ii) RλB0 = B0, ∀λ ∈ ρ(L).

Proof. (i) We show first that Lλ is a bounded operator. Indeed, since {Pt}t≥0 is
contractive, for each f ∈ B, we have

∥Lλf∥ ≤
∫ ∞

0
e−λs∥Psf∥ds ≤

∫ ∞

0
e−λs∥f∥ds = 1

λ
∥f∥.

It remains to show that Lλ = (λI − L)−1. In particular, for the right inverse, let
f ∈ B, and we need to show

f = (λI − L)Lλf = (λI − L) lim
t→∞

∫ t

0
e−λsPsf ds.

It is left as an exercise to show that P λs f := e−λsPsf defines a strongly continuous,
contractive semigroup with infinitesimal generator Lλ := L − λI. Therefore, we
have

(λI − L)

∫ t

0
e−λsPsf ds = −Lλ

∫ t

0
e−λsPsf ds = f − P λt f = f − e−λtPtf, (1.3.1)
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where the second equality follows from Theorem 1.2.3 (i). Now, since

∥e−λtPtf∥ ≤ e−λt∥f∥ t→∞−−−→ 0,

Taking limit as t→ ∞ in (1.3.1) we get the result.

For the left inverse, let f ∈ B, and we need to show

f = Lλ(λI − L)f.

We have

LλLf =

∫ ∞

0
e−λsPsLf ds =

∫ ∞

0
e−λsLPsf ds =

∫ ∞

0
e−λs

d

ds
Psf ds

= e−λsPsf

]∞
0

+ λ

∫ ∞

0
e−λsPsf ds = −f + λLλf,

where the second and third equalities follow from Theorem 1.2.3 and the next comes
from an integration by parts. Rearranging the terms above we get the result.

(ii) We first show that RλB0 ⊂ B0. To this end, let f = Rλg ∈ RλB0. Then

Ptf = PtRλg =

∫ ∞

0
e−λsPt+sgds

by part (i) of this theorem. Then with the change of variables, t̃ = t+ s, we have

Ptf =

∫ ∞

t
e−λ(t̃−t)Pt̃gdt̃ = eλt

[∫ ∞

0
e−λt̃Pt̃gdt̃−

∫ t

0
e−λt̃Pt̃gdt̃

]
= eλt

[
Rλg −

∫ t

0
e−λt̃Pt̃gdt̃

]
t↓0−−→ f − 0 = f.

Hence, f ∈ B0 and RλB0 ⊂ B0. Since B0 is closed, this implies that in fact,
RλB0 ⊆ B0.

Next, we show B0 ⊂ RλB0. Let f ∈ B0 and fn := n
∫∞
0 e−snPsfds ∈ RnB0. Then

we have

∥fn − f∥ =

∥∥∥∥n ∫ ∞

0
e−snPsfds− n

∫ ∞

0
e−snfds

∥∥∥∥ ≤ n

∫ ∞

0
e−sn∥Psf − f∥ds

=

∫ ∞

0
e−s̃∥Ps̃/nf − f∥ds̃ n→∞−−−→ 0

because ∥Ps̃/nf − f∥ n→∞−−−→ 0 since f ∈ B0. So fn
n→∞−−−→ f , f ∈ RλB0, and hence

B0 ⊆ RλB0.
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Exercise 1.3.7. Show the resolvent of
{
PBMt

}
t≥0

on C0(R) is

Rλf(x) =

∫
R

1√
2λ
e−

√
2λ|x−y|f(y)dy.

Example 1.3.8. Let us show that the domain of the infinitesimal generator L of{
PBMt

}
t≥0

on C0(R) is

C2
0 (R) =

{
f ∈ C0(R) ∩ C2(R) : f ′′ ∈ C0(R)

}
.

First, let f ∈ D(L). Then we can write

f = Rλg =
1√
2λ
e−

√
2λx

∫ x

−∞
e
√
2λyg(y)dy +

1√
2λ
e
√
2λx

∫ ∞

x
e−

√
2λyg(y)dy ∈ C0(R)

f ′ = −e−
√
2λx

∫ x

−∞
e
√
2λyg(y)dy + e

√
2λx

∫ ∞

x
e−

√
2λyg(y)dy ∈ C0(R)

f ′′ = 2λRλg − 2g ∈ C0(R)

so f ∈ C2
0 (R) and D(L) ⊂ C2

0 (R). The details of the equality for f ′′ above are left
as a homework exercise.
Also notice that we have

f ′′ = 2λf − 2R−1
λ f = 2λf − 2λf + 2Lf = 2Lf (1.3.2)

so we see again that Lf = 1
2f

′′.
Next, we show that C2

0 (R) ⊂ D(L). The proof will be left as a homework exercise,
but we will give the general idea here. Let f ∈ C2

0 (R). We would like to show there
exists g such that f = Rλg, i.e. gR

−1
λ f . Based on equation (1.3.2), we can define

h = λf − 1
2f

′′ (guess for g). Then we write the differential equation satisfied by
u = g − h and check it has only solution u = 0, whence g = h.

Corollary 1.3.9. Let {Pt}t≥0 be a strongly continuous contractive semigroup on B
with infinitesimal generator L. Then

∥(λI − L)f∥ ≥ λ∥f∥, ∀f ∈ B. (1.3.3)

(Note: an operator satisfying (1.3.3) is called dissipative)

Proof. By Theorem 1.3.6 and assumption, RλB0 = B0 = B. Let f ∈ RλB0. Then

∥f∥ = ∥Rλg∥ =
1

λ
∥λRλg∥ ≤ 1

λ
∥g∥ =

1

λ
∥(λI − L)f∥.

© Patricia Alonso Ruiz 14



1.4. HILLE-YOSIDA THEOREM CHAPTER 1. SGS, IGS, MPS

Proposition 1.3.10. Let A : D(A) ⊂ B → B be a linear operator. Assume that

t 7→ u(t) ∈ D(A), and (1.3.4)

t 7→ Au(t) ∈ B (1.3.5)

are continuous functions for all t > 0, and for all ε > 0,

u(t) = u(ε) +

∫ t

ε
Au(s)ds (1.3.6)

for all t > ε. Then ∥u(t)∥ ≤ ∥u(0)∥ for all t ≥ 0.

Proof. (Homework)

Lemma 1.3.11. A strongly continuous contractive semigroup is uniquely deter-
mined by its infinitesimal generator.

Proof. Suppose {Pt}t≥0 and {Qt}t≥0 are strongly contractive semigroups both with
infinitesimal generator L. We would like to apply Proposition 1.3.10, with u(t) =
Pt − Qt and A = L, so we must check the conditions (1.3.4), (1.3.5), and (1.3.6).
Condition (1.3.4) holds since Pt and Qt are continuous in t. By Theorem 1.2.3,
D(L) = B0, so (1.3.5) holds. To see that (1.3.6) holds, notice that for t > ε > 0,

(Pt −Qt)f − (Pε −Qε)f =

∫ t

ε

d

ds
(Ps −Qs)fds =

∫ t

ε
L(Ps −Qs)ds

where the last equality comes from the heat equation. Hence, we may apply Propo-
sition 1.3.10, and we have ∥Pt − Qt∥ ≤ ∥P0 − Q0∥ = 0 for all t ≥ 0, so Pt = Qt is
uniquely determined by L.

1.4. Hille-Yosida Theorem

Definition 1.4.1. Let A : D(A) ⊂ B → B be a closed linear operator with
D(A) = B and (0,∞) ⊂ ρ(A). For each λ ∈ ρ(A),

Aλf := λARλf, f ∈ B,

where Rλ is the resolvent of A, is called the Yosida approximation of A.

Some useful identities are given by

λARλf = λ(A− λI + λI)Rλf = −λf + λ2Rλf (1.4.1)

= −λRλR−1
λ f + λ2Rλf = λRλ(−R−1

λ + λI)f. (1.4.2)

Note that (1.4.2) is valid as long as f ∈ D(A).
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Proposition 1.4.2. Let A : D(A) ⊂ B → B be a closed linear operator with
D(A) = B and (0,∞) ⊂ ρ(A). If ∥λRλ∥ ≤ 1, then the Yosida approximation of A
satisfies:

(i) Aλ is bounded or all λ ∈ ρ(A)

(ii) AλAµ = AµAλ for all λ, µ ∈ ρ(A)

(iii) Af = s-lim
n→∞

Aλf for all f ∈ D(A)

Proof. (i) Using (1.4.1), ∥Aλf∥ = ∥λARλf∥ = ∥λ2Rλf − λf∥ ≤ λ∥λRλf∥ +
λ∥f∥ ≤ 2λ∥f∥

(ii) Using (1.4.1) again, AλAµf = (λ2Rλ − λI)(µ2Rµ − µI)f , and these two
factors commute because Rλ and Rµ commute

(iii) ∥Aλ −Af∥ = ∥λRλAf −Af∥ λ→∞−−−→ 0 by Lemma 1.3.4 (ii)

Theorem 1.4.3. (Hille-Yosida) A linear operator L : D(L) ⊂ B → B is the
infinitesimal generator of a strongly continuous contractible semigroup {Pt}t≥0 on
B if and only if:

(i) D(L) = B(= B0) and

(ii) (0,∞) ⊂ ρ(L) with ∥λRλ∥ ≤ 1 for all λ ∈ ρ(L)

Proof. (⇒) By Lemma 1.3.4, D(L) = RλB, and by Theorem 1.3.6, RλB = B0 (= B
by strong continuity), so statement (i) is established. Statement (ii) follows from
Theorem 1.3.6 (i) in particular because

∥λRλf∥ ≤ λ

∫ ∞

0
e−λt∥Ptf∥dt ≤ ∥f∥.

(⇐) Let P λt be the semigroup generated by Lλ, the Yosida approximation of L
(P λt := etLλ would be a reasonable construction). Claim:

{
P λt
}
λ
is Cauchy with

respect to λ locally on compacts.
Proof of claim: Let λ, µ ∈ R. Then for f ∈ B,∥∥∥P λt f − Pµt f

∥∥∥ =
∥∥∥P λt Pµ0 f − P λ0 P

µ
t f
∥∥∥

=

∥∥∥∥∥
n∑
k=1

P λtk/nP
µ
t(n−k)/nf − P λt(k−1)/nP

µ
t(n−(k−1))/nf

∥∥∥∥∥
≤

n∑
k=1

∥∥∥P λt(k−1)/nP
µ
t(n−k)/n

(
P λt/nf − Pµt/nf

)∥∥∥
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≤
n∑
k=1

∥∥∥P λt(k−1)/n

∥∥∥∥∥∥Pµt(n−k)/n∥∥∥∥∥∥P λt/nf − Pµt/nf
∥∥∥ ≤ n

∥∥∥P λt/nf − Pµt/nf
∥∥∥

≤ t
∥∥∥n
t

(
P λt/nf − f

)
− Lλf

∥∥∥+ t
∥∥∥n
t

(
Pµt/nf − f

)
− Lµf

∥∥∥+ t ∥Lλf − Lµf∥

n→∞−−−→ t ∥Lλf − Lµf∥
λ,µ→∞−−−−−→ 0

for any t, so the claim is proven on D(L). This can be extended to all of B by the
density of D(L) and the claim is proven.
Hence, there exists Ptf := s-lim

λ→∞
P λt f with uniform convergence on compact sub-

sets. Now it remains to check that {Pt}t≥0 as defined above is indeed a strongly
continuous contractive semigroup and that L is indeed the infinitesimal generator
of {Pt}t≥0. The former is left as a homework exercise.
For the latter, let H be the infinitesimal generator of {Pt}t≥0. Then for f ∈ D(L),
we have∥∥∥∥1t (Ptf − f)− Lf

∥∥∥∥ ≤
∥∥∥∥1t (Ptf − P λt f

)∥∥∥∥+ ∥∥∥∥1t (P λt f − f
)
− Lλf

∥∥∥∥+ ∥Lλf − Lf∥

λ→∞−−−→ 0.

Showing the first of these terms tends to 0 is left as a homework exercise, but it
is very similar to the above ”telescopic series” argument. Also, note that D(L) =
RL1B = RH1 B = D(H), since the semigroups generated by L and H are the same,
meaning their resolvents are the same.

Proposition 1.4.4. (Diagram)

(iii)

(iv)

(ii)(i) (v) (vi)

{Rλ}λ>0
(resolvent family on B0){Pt}t≥0

L : D(L) ⊂ B → B
(L is a closed linear operator and D = B)
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Proof. (i) Lf = s− lim
t→0

1

t
(Ptf − f), see Definition 1.2.2.

(ii) Pt = etL

(iii) Using the Laplace Transform (1.3.6), Rλf =
∫∞
0 e−λsPsfds

(iv) Hille-Yosida

(v) L = λI −R−1

(vi) Rλ = (λI − L)−1

Definition 1.4.5. A semigroup {Pt}t≥0 is conservative if

Pt1 = 1 ∀t ≥ 0.

Theorem 1.4.6. Given the compact metric space (M,d), a closed linear operator
L : D(L) ⊂ C(M) → C(M) is the infinitesimal generator of a conservative strongly
continuous contractive semigroup, {Pt}t≥0 if and only if:

(i) D(L) = C(M) (= C0(M) = Cb(M))

(ii) ∀λ > 0 and g ∈ C(M) ∃ at least one f ∈ D(L) such that λf − Lf = g

(iii) The maximum principle holds: ∀f ∈ D(L) and x0 ∈ M such that f(x0) =
∥f∥∞, it follows that Lf(x0) ≤ 0

(iv) 1 ∈ D(L) and L1 = 0.

Proof. (⇒)

(i) Theorem (1.2.3) (i) ⇒ D(L) = B0 = C(M) (because M is compact)

(ii) Theorem (1.3.6) ⇒ (0,∞) ⊆ ρ(L) ⇒ g = R−1
λ Rλg = (λI − L)Rλg =: f ∈

D(L) (D(L) = RλB by Lemma (1.3.4))

(iii) We want Lf(x0) ≤ 0 given x0 ∈ M and f(x0) = ∥f∥∞. We check that
(Ptf)(x0)− f(x0) ≤ 0:

Ptf(x0) ≤ ∥Ptf∥∞ ≤ ∥f∥∞ = f(x0)

(the second inequality holds by contractibility)

(iv) L1 = s-lim
t→0

1

t
(Pt1− 1) = 0 (Pt1 = 1).

(⇐) The result(s) will follow by Hille-Yosida if we verify the necessary conditions:
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1. Check that (0,∞) ⊆ ρ(L)

Let λ > 0. We want to show that (λI−L)f = 0 ⇒ f = 0. Suppose f ̸= 0.

Then ∃x0 ∈ M such that
1

λ
Lf(x0) = f(x0) = ∥f∥∞ > 0(WLOG) ⇒

Lf(x0) > 0

2. Check that ∥λRλ∥∞ ≤ 1 ∀λ

By compactness ofM , for some x0, λf(x0) = ∥λf∥∞ =
∥∥λRλR−1

λ f
∥∥
∞ =

∥λRλg∥∞ with g = R−1
λ f .

At the same time

λf(x0) = λf(x0)− Lf(x0) + Lf(x0) = (λI − L)f(x0) + Lf(x0)

= R−1
λ f(x0) + Lf(x0) = g(x0) + Lf(x0)

≤ ∥λg∥∞

(Lf(x0) ≤ 0 by the maximal principle)

It follows that Rλ is bounded and L is closed. Hille-Yosida ⇒ The exists a semi-
group {Pt}t≥0 with L as the infinitesimal generator. Moreover, the semigroup is is
conservative due to the following:

Pt1 =
∞∑
k=0

tk

k!
Lk1 = 1

(Lk1 = 0 for k ≥ 1).

Example 1.4.7. Say M = [0, 1] Lf =
1

2
f ′′ and D(L) = {f ∈ C2(M) : f ′(0) =

f ′(1) = 0}. Check the conditions:

(i) D(L) = C([0, 1]) by Stone-Weierstrass.

(ii) ∀g ∈ C(M), f is the solution to

λf − 1

2
f ′′ = g

f ′(0) = f ′(1) = 0

(To solve for f is left as a homework exercise)

(iii) maximum principle: Show f(x0) = ∥f∥∞ ⇒ f ′′(x0) ≤ 0

For x0 ∈ (0, 1) the maximum principle is satisfied for f ∈ C2(M)

For x0 ∈ {0, 1},

(iv) The last property follows from the setup
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1.5. Stochastic processes and semigroups
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Lemma 1.5.1. Let X = {Xt}t≥0 be a Ft adapted process. Then, TFAE:

(i) (Basic Markov Property) P(Xt ∈ A | Fs) = P(Xt ∈ A | σ(Xs)), ∀A ∈
B(M), 0 ≤ s < t ≤ ∞.

(ii) E[f(Xt) | Fs] = E[f(Xt) | σ(Xs)], ∀f ∈ B, 0 ≤ s ≤ t.

(iii) If s ≥ 0 and E ∈ σ(Xt : t ≥ s), then P(E | Fs) = P(E | σ(Xs)).

(iv) ∀s ≥ 0, F ∈ Fs and E ∈ σ(Xt : t ≥ s), P(E ∩ F | σ(Xs)) = P(E | σ(Xs)) ·
P(F | σ(Xs)).

Proof. In order to show that (ii) =⇒ (i), we assume f = 1A in (ii). Now, to
show that (i) =⇒ (ii), we first note that (ii) follows immediately for characteristic
functions (1A, A ∈ B(M)). Then, we follow the process of measure-theoretic induc-
tion (prove it for simple functions, non-negative measurable and any measurable)
to show that it follows ∀f ∈ B.
We now show that (iii) =⇒ (iv). Consider F ∈ Fs and E ∈ σ(Xt : t ≥ s). Then,

P(E ∩ F | σ(Xs)) = E[1E · 1F | σ(Xs)]

Note that σ(Xs) ⊂ Fs and use the tower property

= E[E[1E · 1F | σ(Xs)] | Fs]
= E[1F E[1E | Fs] | σ(Xs)]

Since σ(Xs) is measurable,

= E[1FP[E | Fs]|σ(Xs)]

= P(E |Fs)E[1F | σ(Xs)] = P(E |Fs) · P(F |Fs).

Definition 1.5.2. Let {Px}x∈M be a family of probability measures and {Ft}t≥0 a
filtrartion for (Ω,F). A stochastic process X = {Xt}t>0 is Markov if

(i) X is Ft adapted.

(ii) for each E ⊂ F∞ = σ
( ⋃
t≥0

Ft
)
, the map x 7→ Px(E) is B(M)-measurable.

(iii) the (weak) Markov property holds, i.e. ∀x ∈M,A ∈ B(M), s, t ≥ 0,

Px(Xt+s ∈ A | Fs) = PXs(Xt ∈ A).

Proposition 1.5.3. A Markov process X = {Xt}t≥0 satisfies the basic Markov
property for any Px, x ∈M .
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Proof. Consider a Markov process X = {Xt}t≥0 and a x ∈M,Px

Px(Xt ∈ A | Fs) = Px(Xt−s+s ∈ A | Fs)

by the (weak) Markov property,

= PXs(Xt−s ∈ A)

= Ex[PXs(Xt−s ∈ A | σ(Xs)]

by the (weak) Markov property,

= Ex[Px(Xt ∈ A | Fs) | σ(Xs)]

Note that σ(Xs) ⊂ Fs and Px(Xt ∈ A | Fs) = Ex[1{Xt∈A} | Fs]. Using the tower
property,

= E[1{Xt∈A} | σ(Xs)] = Px(Xt ∈ A | σ(Xs)).

Definition 1.5.4. A function p : [0,∞) × M × B(M) → [0, 1] is called a time-
homogeneous Markov transition function if

(i) ∀t ≥ 0 and x ∈M , A 7→ p(t, x,A) is a measure on M .

(ii) ∀t ≥ 0 and A ∈ B(M), x 7→ p(t, x,A) is B(M)-measurable.

(iii) (Chapman-Kolmogorov Property) ∀s, t ≥ 0, x ∈M,A ∈ B(M)

p(t+ s, x,A) = p(t, ·, ·) ∗ p(s, ·, ·)(x,A) =
∫
M

p(s, y, A)p(t, x, dy).

Note: (i) and (ii) are also known as the transition kernel and
∫
M

p(s, y, A)p(t, x, dy)

can also be represented as
∫
M

p(s, y, A)dp(t, x, y).

Example 1.5.5.

pBM (t, x,A) =

1A(x), t=0∫
A

1√
2πt
e

−|x−y|2
2t dy t > 0

is a Markov transition function

Definition 1.5.6. Let X = {Xt} be a Ft-adapted Markov process. A Markov
transition function p : [0,∞)×M ×B(M) → [0, 1] is a transitions function for X if
for all s, t ≥ 0 and A ∈ B(M)

p(t,Xs, A) = Px(Xt+s ∈ A | Fs) Px − a.s.
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Theorem 1.5.7. Consider a filtration {Ft}t≥0 and a probability measure {Px}x∈M
Let X = {Xt}t≥0 be a Markov process. Then,

(i) for t ≥ 0, x ∈M,A ∈ B(M)

p(t, x,A) = Px(Xt ∈ A).

(ii) the family of operators Pt : B → B s.t. f 7→
∫
M

f(y)p(t, x, dy) = Ex[f(Xt)] is

a contraction semigroup on B.

Proof. (i) A 7→ p(t, x,A) defines a measure by definition of x 7→ p(t, x,A) is a
B(M)-measurable because X is Markov.
Now, we will show that Chapman-Kolmogorov property holds.

p(t+ s, x,A) = Px(Xs+t ∈ A)

= Ex[Ex[1{Xt∈A} | Fs]] = Ex[Px(Xt ∈ A | Fs)]

by the (weak) Markov property

= Ex[PXs(Xt ∈ A)] =

∫
Ω

p(t,Xs(ω), A)dPx(ω)

set y = Xs(ω)

=

∫
M

p(t, y, A)dPx ◦X−1
s (y) =

∫
M

p(t, y, A)Px(Xs ∈ dy)

=

∫
M

p(t, y, A)p(s, x, dy).

(ii) We will first show that Pt is a semigroup.

P0f(x) =

∫
M

f(y)p(0, x, dy) =

∫
M

f(y)Px(X0 ∈ dy) = f(x).

Also,

Pt+sf(x) =

∫
M

f(z)p(t+ s, x, dz)

=

∫
M

∫
M

f(z)p(t, y, dz)

 p(s, x, dy)
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=

∫
M

Ptf(y)p(s, x, dy) = Ps(Ptf)(x).

Now, to show that Pt is contractive, we note that for all x ∈M ,

|Ptf(x)| ≤ ∥f∥
∫
M

p(t, x, dy) ≤ ∥f∥

therefore ∥Ptf∥ ≤ ∥f∥.

Proposition 1.5.8. Let X = {Xt}t≥0 be a Markov process. Assume:

(i) The Markov transition function is symmetric i.e. ∀f, g ∈ B with compact
support,∫

M

∫
M

f(x)g(y)p(t, x, dy)µ(dx) =

∫
M

∫
M

f(y)g(x)p(t, x, dy)µ(dx).

(ii) ∃D ⊂ B ∩ L′(M,µ) dense in L2(M,µ) such that ∀f ∈ D,

lim
t→0+

∫
M

f(y)p(t, x, dy) = f(x) µ− a.e. for x ∈M.

Then, the associated semigroup Ptf(x) =
∫
M

f(y)p(t, x, dy) in L2(M,µ) is a strongly

contractive semigroup.

Proof. We only need to show that the semigroup is strongly contractive i.e. for
any f ∈ L2(M,µ), lim

t→0
Ptf = f or lim

t→0
∥Ptf − f∥L2 = 0. Note that D is dense in

L2(M,µ), so it is sufficient to prove the previous limits holds for any f ∈ D. So,
consider a f ∈ D,

∥Ptf − f∥2L2 =

∫
M

(Ptf − f)2dµ =

∫
M

Ptf
2dµ− 2

∫
M

Ptf · fdµ+

∫
M

f2dµ.

By the dominated convergence theorem

lim
t→0

∫
M

Ptf · fdµ =

∫
M

lim
t→0

Ptf · fdµ =

∫
M

f2dµ.

Moreover, ∫
M

Ptf
2dµ =

∫
M

(∫
M

f(y)p(t, x, dy)
)2
µ(dx)
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Using Cauchy-Schwarz

≤
∫
M

∫
M

f2(y)p(t, x, dy)

∫
M

p(t, x, dy)µ(dx)

Since p(t, x, dy) ≤ 1

≤
∫
M

∫
M

f2(y)p(t, x, dy)µ(dx)

Using symmetry,

=

∫
M

∫
M

f2(x)p(t, x, dy)µ(dx)

=

∫
M

f2(x)

∫
M

p(t, x, dy)µ(dx) ≤
∫
M

f2dµ

Therefore,

lim
t→0

∥Ptf − f∥2L2 = lim
t→0

∫
M

(Ptf − f)2dµ

= lim
t→0

∫
M

Ptf
2dµ− 2 lim

t→0

∫
M

Ptf · fdµ+

∫
M

f2dµ

= lim
t→0

∫
M

Ptf
2dµ− 2

∫
M

f2dµ+

∫
M

f2dµ

= lim
t→0

∫
M

Ptf
2dµ−

∫
M

f2dµ = 0

Theorem 1.5.9. Let p : [0,∞) × M × B(M) → [0, 1] be a Markov transition
function and µ a probability distribution on (M,d). There exists a Markov process
X = {Xt}t≥0 whose finite-dimensional distributions are uniquely determines by

Px(X0 ∈ A0, Xt1 ∈ A1, ..., Xtn ∈ An) =

∫
A0

∫
A1

...

∫
An

p(tn−tn−1, yn−1, An)...p(t, y0, dy)µ(dy0).

Proof. This follows from Kolmogorov’s theorem using the fact that the family of

measures

{∫
M

p(t, x, ·)µ(dx)
}
t≥0

is tight.
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CHAPTER 2

Dirichlet form, infinitesimal generators, Markov semigroups

In this chapter, H is a Hilbert space with inner product ⟨·, ·⟩H and norm ∥ · ∥H.

2.1. Closed forms and generators

Definition 2.1.1. A densely defined non-negative symmetric bilinear form E :
D(E)×D(E) → R (where D(E) ⊂ H) satisfies

(i) D(E) is a dense linear subspace of H.

(ii) ∀f, g ∈ D(E), E(f, g) ≥ 0.

(iii) ∀f, g ∈ D(E), E(f, g) = E(g, f)

(iv) ∀f, g, h ∈ D(E), E(af + bg, h) = aE(f, h) + bE(g, h).

Then, (E , D(E)) is called a symmetric form.

Definition 2.1.2. A symmetric bilinear form (E , D(E)) is closed ifD(E) is a Hilbert
space (i.e. complete) with the norm

∥f∥2E1 := E(f, f) + ∥f∥2H, ∀f ∈ D(E).

Proposition 2.1.3. For any λ > 0, let ∥·∥Eλ be the norm ∥f∥Eλ = E(f, f)+λ∥f∥2H.
For any λ1, λ2 > 0, ∥ · ∥Eλ1 is comparable to ∥ · ∥Eλ2 .

Proof.

∥f∥Eλ1 = E(f, f) + λ1∥f∥2H ≤ ∥f∥Eλ2 +
λ1
λ2

∥f∥Eλ2 = (1 +
λ1
λ2

)∥f∥Eλ2 .
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Definition 2.1.4. A symmetric form E is closable if for all sequence fn ∈ D(E),

E(fn − fm, fn − fm)
n,m→∞−−−−−→ 0

∥fn∥H
n→∞−−−→ 0

}
=⇒ E(fn, fn)

n→∞−−−→ 0.

Theorem 2.1.5. Let (E , D(E)) be a closed symmetric form on H. There is a unique
non-positive self-adjoint operator L : D(L) ⊆ H → H such that

(i) D(L) = {f ∈ D(E) : ∃h ∈ H s.t. E(f, g) = −⟨h, g⟩H, ∀g ∈ D(E)}. And we set
Lf = h.

(ii) D(L)
E1

= D(E).

Proof. (i) For any λ > 0, since (D(E , ∥ · ∥Eλ) is a Hilbert space, for all f ∈ H,

∃!h ∈ D(E), s.t. ⟨h, g⟩Eλ = ⟨f, g⟩, ∥h∥Eλ ≤ ∥f∥/
√
λ, ∀g ∈ D(E).

Denote h = R̃λf , then R̃λ is a bounded operator on both H and (D(E), ∥ ·∥Eλ) with
∥R̃λ∥ ≤ 1/λ and ∥R̃λ∥D(E),Eλ ≤ 1/λ. And we have

E(R̃λf, g) + λ⟨R̃λf, g⟩ = ⟨f, g⟩ (2.1.1)

We want to show that R̃λ is actually the resolvent of L so that Lf = (λ − R̃−1
λ )f .

First, we check some basic properties of R̃λ.

(a) R̃λ1 − R̃λ2 = (λ2 − λ1)R̃λ2R̃λ1 . Indeed, substituting λ1,λ2 into (2.1.1) and
taking the difference, we obtain

E(R̃λ1f − R̃λ2f, g) + λ2⟨R̃λ1f − R̃λ2f, g⟩ = ⟨(λ2 − λ1)R̃λ1f, g⟩.

Applying (2.1.1) again to the above equation, we have

R̃λ1f − R̃λ2f = (λ2 − λ1)R̃λ1R̃λ2f.

(b) f = limλ→∞ λR̃λf in H for all f ∈ D(E). See the proof of Lemma 1.3.4 (iii).

(c) R̃−1
λ exists: R̃λf = 0 =⇒ f = 0. Assume R̃λf = 0. Fix λ > 0, for any λ̃ > λ,

by (a)

R̃λ̃f = R̃λf + (λ− λ̃)R̃λ̃R̃λf = 0.

Therefore f = limλ→∞ λR̃λf = 0.
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Now define L as Lf = (λ−R̃−1
λ )f with D(L) = R̃λH. Using (a) one can easily check

that this definition is independent of λ. In particular, {R̃λ}λ>0 is the resolvent of
L. So (0,∞) ⊂ ρ(L) hence L is closed (also densely defined by (b)).
We now check that L indeed satisfies (i). For any f = R̃λk ∈ R̃λH, by (2.1.1),
E(f, g) = −⟨λf − k, g⟩. So

R̃λH ⊆ {f ∈ D(E) : ∃h ∈ H s.t. E(f, g) = −⟨h, g⟩H,∀g ∈ D(E)}.

Conversely, if for f ∈ D(E) there is h ∈ H s.t. E(f, g) = −⟨h, g⟩H for all g ∈ D(E),
then we have

−E(f, g) + λ⟨f, g⟩ = ⟨λf − h, g⟩.

So f = R̃λ(λf − h) ∈ R̃λH by (2.1.1). Therefore,

D(L) = R̃λH = {f ∈ D(E) : ∃h ∈ H s.t. E(f, g) = −⟨h, g⟩H, ∀g ∈ D(E)}.

This implies that L indeed satisfies (i).
(ii) We can now again proceed as in the proof of Lemma 1.3.4 (iii) to show that

D(L)
E1

= D(E) using ∥λR̃λ∥D(E),Eλ ≤ 1.
Finally, since E is symmetric, L is also symmetric (D(L) ⊂ D(L∗), L ⊂ L∗). It
remains to check that L is self-adjoint, i.e. D(L∗) ⊆ D(L). If f ∈ D(L∗), then for

all k ∈ D(L), ⟨L∗f, k⟩ = ⟨f, Lk⟩ = ⟨Lk, f⟩ = −E(f, k). Since D(L)
E1

= D(E), by
continuity we have for all k ∈ D(E), ⟨L∗f, k⟩ = −E(f, k), hence f ∈ D(L).

Example 2.1.6. E(f, g) =
∫
R f

′ · g′dx, with D(E) = C2
0 (R) the space of compactly

supported C2 functions. Then E is closable and symmetric in L2(R, dx).

E(f, g) =
∫
R
f ′ · g′dx = −

∫
f ′′ · gdx = −⟨f ′′, g⟩.

Thus L = d
dx2

≤ 0, and D(L) = C2
c (R)

E1
where E1 is the Sobolev norm ∥f∥2E1 =

∥f∥2L2 + ∥f ′∥2L2 .

Theorem 2.1.7 (Spectral Theorem). Let L : D(L) ⊆ H → H be a self-adjoint
operator with spectrum σ(L). There is a finite measure ν on σ(L)×N and a unitary
operator U : H → L2(σ(ν)× N, ν) such that

(i) f ∈ D(L) ⇔ g(s) := s · Uf(s, n) ∈ L2(σ(ν)× N, ν).

(ii) ULU−1φ(s) = sφ(s), ∀φ ∈ U(D(L)).

(iii) UF (L)U−1φ(s) = F (s)φ(s), ∀F ∈ Cc(R), φ ∈ L2(σ(ν)× N, ν).

Theorem 2.1.8. Let L : D(L) ⊆ H → H be a non-positive self-adjoint operator.
Then,

E(f, g) = ⟨(−L)1/2f, (−L)1/2g⟩H, D(E) = D((−L)1/2).
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Proof. We want to show (E , D(E)) is closed, i.e. if {fn} ⊆ D(E) is E1-Cauchy and
∥fn∥H → 0, then E(fn, fn) → 0. Since −L is non-negative and self-adjoint, we
can apply spectrum theorem (or functional calculus) to get that (−L)1/2 is also
non-negative and selfadjoint (in particular closed). Therefore if (−L)1/2fn

n→∞−−−→ g
then g = (−L)1/20 = 0.

Theorem 2.1.9. Let L : D(L) ⊆ H → H be a non-positive self-adjoint opera-
tor with associated closed symmetric form (E , D(E)). Then L is the infinitesimal
generator of a strongly continuous contractive semigroup {Pt}t≥0 on H and

E(f, g) = lim
t→0

1

t
⟨f − Ptf, g⟩, D(E) = {f ∈ H : E(f, f) <∞}.

Proof. (1) The resolvent of L satisfies Hille-Yosida (HW), hence the associated
semigroup {Pt}t≥0 exists. And also by Hille-Yosida Ptf = etLf for all f ∈ H. By
spectral theorem, UPtU

−1φ(s) = etsφ(s) for all φ ∈ L2(σ(L) × N, ν). Now, for
f ∈ H, let φ = Uf

1

t
⟨f − Ptf, f⟩H =

1

t
⟨(I − Pt)f, f⟩H =

1

t
⟨U(I − Pt)U

−1Uf,Uf⟩L2

=
1

t
⟨U(I − Pt)U

−1φ,φ⟩L2 =

∫
σ(L)×N

(I − etL)φ(s)φ(s)dν(s, n)

Taking t→ 0, we see that limt→0
1
t ⟨f −Ptf, f⟩H exists iff

∫
σ(L)×N sφ(s)φ(s)dν(s, n)

is finite. But∫
σ(L)×N

sφ(s)φ(s)dν(s, n) = ⟨
√
−sφ(s),

√
−sφ(s)⟩L2

= ⟨(−L)1/2f, (−L)1/2f⟩H − E(f, f),

which is finite iff f ∈ D((−L)1/2) = D(E).

2.2. Dirichlet forms and Markov semigroups

Definition 2.2.1. A linear operator A : D(A) ⊆ L2(M,µ) → L2(M,µ) is called
Markovian if for any f ∈ D(A) with 0 ≤ f ≤ 1 µ-a.e., we have 0 ≤ Af ≤ 1 µ-a.e.
{Pt}t≥0 is Markovian if Pt is Markovian for all t > 0.

Definition 2.2.2. (i) A normal contraction is a function ψ : R → R such that
ψ(0) = 0 and |ψ(s)− ψ(t)| ≤ |s− t| for all s, t ∈ R.

(ii) For f ∈ M → R, a normal contraction of f is any function f̃ = ψ ◦ f where
ψ is a normal contraction. In particular |f̃(x) − f̃(y)| ≤ |f(x) − f(y)| and
|f̃(x)| ≤ |f(x)|.
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Definition 2.2.3. A closed symmetric form (E , D(E)) is said to be Markovian if
for all f ∈ D(E), any normal contraction f̃ of f satisfies

f̃ ∈ D(E) and E(f̃ , f̃) ≤ E(f, f).

A Dirichlet form (D.F.) is a Markovian closed symmetric form.

Proposition 2.2.4. A closed symmetric form (E , D(E)) is Markovian if for all
f ∈ D(E), we have

0 ∨ f ∧ 1 ∈ D(E) and E(0 ∨ f ∧ 1, 0 ∨ f ∧ 1) ≤ E(f, f).

Theorem 2.2.5. Let {Pt}t≥0 be a (symmetric) strongly continuous semigroup in
L2(M,µ) that is Markovian. There exists a symmetric Markov transition function
p(t, x, ·) such that

Ptf(x) =

∫
M
f(y)p(t, x, dy)

for all f ∈ L∞(M,µ).

The proof of this theorem uses the bi-measure theorem.

Theorem 2.2.6. A closed symmetric form (E , D(E)) is Markovian iff the associated
semigroup {Pt}t≥0 is Markovian.

We prove this next, but first we introduce the following definition.

Definition 2.2.7. Let H be a Hilbert space. We call C ⊂ H a cone if for any
f ∈ C, we have αf ∈ C for all α > 0.

Lemma 2.2.8. Let C ⊂ H be a cone and assume that for all f ∈ H, there is f̃ ∈ H
such that

∥f̃∥H ≤ ∥f∥H (∗) and |⟨f, h⟩H | ≤ ⟨f̃ , h⟩H (∗∗)

for all h ∈ C. Then f = f̃ whenever f ∈ C.

Proof. Simply note that if f ∈ C, by using (∗) and (∗∗), we get

∥f − f̃∥2H = ∥f∥2H − 2⟨f, f̃⟩H + ∥f̃∥2H ≤ 0.

We now prove Theorem 2.2.6.

Proof of Theorem 2.2.6. We first prove the forward implication. We want to show
that whenever 0 ≤ f ≤ 1, we have 0 ≤ Ptf ≤ 1. Recall that Eλ(f, g) = E(f, g) +
λ⟨f, g⟩L2 is an inner product in D(E). Consider the cone C = {Rλf : f ≥ 0}. Let
g ∈ D(E). Note that

Eλ(|g|, Rλf) = E(|g|, Rλf) + λ⟨|g|, Rλf⟩L2
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= −⟨|g|, LRλf⟩L2 + λ⟨|g|, Rλf⟩L2

= ⟨|g|, (λI − L)Rλf⟩L2

= ⟨|g|, f⟩L2 (2.2.1)

≥ |⟨g, f⟩L2 |
= |Eλ(g,Rλf)|

where the second equality follows from theorem 2.1.5. Also note that∥∥|g|∥∥2Eλ = E(|g|, |g|) + λ⟨|g|, |g|⟩L2 ≤ E(g, g) + λ∥g∥2L2 = Eλ(g, g)

since |g| is a normal contraction of g and (E , D(E)) is Markovian. Then, by the
previous lemma, |Rλf | = Rλf and so Rλf ≥ 0. In particular, for λ > 0, we have
λRλf = 0 ∨ λRλf . Note that

g := (0 ∨ λRλf) ∧ 1

is a normal contraction of λRλf , and so E(g, g) ≤ E(λRλf, λRλf). Thus

∥λRλf − g∥2Eλ = λ2Eλ(Rλf,Rλf)− 2λEλ(Rλf, g) + Eλ(g, g)
= λ2⟨Rλf, f⟩L2 − 2λ⟨f, g⟩L2 + E(g, g) + λ⟨g, g⟩
≤ λ2⟨Rλf, f⟩L2 − 2λ⟨f, g⟩L2 + E(λRλf, λRλf) + λ⟨g, g⟩
= λ2⟨Rλf, f⟩L2 + λ∥f − g∥2L2 + λ2E(Rλf,Rλf)− λ⟨f, f⟩L2 = 0,

where the second equality follows from (2.2.1), and we leave the last equality as
an exercise, cf. Exercise 2.2.10. Thus g = λRλf , whence 0 ≤ λRλf ≤ 1. By
Hille-Yosida’s approximation,

Ptf = s-limλ→∞e
tλ(λRλ−I)f = s- lim

λ→∞
e−tλ

∞∑
k=0

(tλ)k

k!
(λRλ)

kf,

so the above implies that 0 ≤ Ptf ≤ 1, as desired. We now prove the reverse
implication. We want to show that E(g, g) ≤ E(f, f) for any normal contraction g
of f . Note that

⟨g − Ptg, g⟩L2 =

∫
M
g2dµ−

∫
M
Ptg · gdµ

=

∫
M
(1− Pt1)g

2dµ+

∫
M
(Pt1 · g − Ptg) · gdµ

=

∫
M
(1− Pt1)g

2dµ+

∫
M

∫
M
(g2(x)− g(x)g(y))p(t, x, dy)dµ(x).

(2.2.2)
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Now, by the symmetric property of p(t, x, dy), we have
∫
M g2(x)p(t, x, dy) =

∫
M g2(y)p(t, x, dy),

so by writing g2(x) = 1
2g

2(x) + 1
2g

2(x) and completing the square in the last ex-
pression gives

⟨g − Ptg, g⟩L2 =

∫
M
(1− Pt1)g

2dµ+
1

2

∫
M

∫
M
(g(x)− g(y))2p(t, x, dy)dµ(x)

≤
∫
M
(1− Pt1)f

2dµ+
1

2

∫
M

∫
M
(f(x)− f(y))2p(t, x, dy)dµ(x)

= ⟨f − Ptf, f⟩L2

since g is a normal contraction of f . Therefore

E(g, g) = lim
t→0

1

t
⟨g − Ptg, g⟩L2 ≤ lim

t→0

1

t
⟨f − Ptf, f⟩L2 = E(f, f).

Example 2.2.9. Let (V,E) be a finite graph and write x ∼ y whenever two vertices
x, y are connected by an edge. Then

E(f, g) = 1

2

∑
x∼y

[f(x)− f(y)][g(x)− g(y)]

is a Dirichlet form on

D(E) = ℓ2(V ) =
{
f : V → R :

∑
x∈V

f2(x)deg(x) <∞
}
,

with infinitesimal generator given by

Lf(x) =
1

deg(x)

∑
y∼x

(f(x)− f(y)).

If we denote the adjacency matrix of the graph by Adj and q := deg(x), we then
have L = 1

qAdj− Id in matrix form.

Exercise 2.2.10. Let (E , D(E) be a Dirichlet form in L2(M,µ). For any λ > 0,
the bilinear form

E(λ)(f, g) := ⟨λ(I − λRλ)f, g⟩L2 , f, g ∈ L2(M,µ)

is sometimes called the Deny-Yosida approximation of (E , D(E). Prove that

E(λ)(f, g) = E(λRλf, λRλf) + λ∥f − g∥2L2 .

© Patricia Alonso Ruiz 32
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2.3. Energy measure & carré du champ operators

Proposition 2.3.1. Let (E , D(E)) be a Dirichlet form in L2(M,µ). For any non-
negative h ∈ L∞(M,µ) ∩ L2(M,µ) and f ∈ D(E) ∩ L∞(M,µ),

0 ≤ E(f, hf)− 1

2
E(h, f2) ≤ ∥h∥∞E(f, f).

Proof. To estimate E(f, hf) note that as before in (2.2.2),

⟨f − Ptf, hf⟩L2 =

∫
M
(1− Pt1)f

2hdµ+

∫
M

∫
M
(f2(x)− f(x)f(y))p(t, x, dy)h(x)dµ(x),

and to estimate 1
2E(h, f

2),

1

2
⟨h−Pth, f2⟩L2 =

1

2

∫
M
(1−Pt1)f2hdµ+

1

2

∫
M

∫
M
(h(x)−h(y))p(t, x, dy)f2(x)dµ(x).

Subtracting the two gives

1

2

∫
M
(1− Pt1)f

2hdµ+

∫
M

∫
M

[1
2
f2(x)h(x)− f(x)f(y)h(x) +

1

2
f2(x)h(y)

]
p(t, x, dy)dµ(x)

=
1

2

∫
M
(1− Pt1)f

2hdµ+
1

2

∫
M

∫
M
h(x)(f(x)− f(y))2p(t, x, dy)dµ(x)

≤ ∥h∥∞
[ ∫

M
(1− Pt1)f

2dµ+
1

2

∫
M

∫
M
(f(x)− f(y))2p(t, x, dy)dµ(x)

]
= ∥h∥∞⟨f − Ptf, f⟩L2 ,

where we use the symmetric property of p(t, x, dy) to then complete the square
in the first equality. The claim follows by dividing over t and taking the limit as
t→ 0.

Theorem 2.3.2. For any f ∈ D(E) ∩ Cc(M) there exists a unique Borel measure
νf such that

Ff (h) := E(f, hf)− 1

2
E(h, f2) =

∫
M
hdνf

for all h ∈ Cc(M).

Proof. By the last proposition, the linear function Ff (h) is non-negative and con-
tinuous, so by Riesz-Markov’s representation theorem, we obtain the existence of
the Borel measure νf .

Recall that νf satisfies:
∀K compact, νf (K) <∞,

∀E ∈ B(M), νf (E) = inf{νf (U) : E ⊂ U, U open},
∀E open, νf (E) = sup{νf (K) : K ⊂ E, K compact}.

νf is called the energy measure of f associated to (E , D(E)).
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Definition 2.3.3. A Dirichlet form (E , D(E)) in L2(M,µ) is called regular if there
exists a subspace C ⊂ D(E) ∩ Cc(M) such that

1. C is dense in Cc(M) with respect to ∥ · ∥∞.

2. C is dense in D(E) with respect to ∥ · ∥E1 =
(
E(·, ·) + ∥ · ∥2L2

)1/2
.

Observation 2.3.4. For (E , D(E)) regular and any f, g ∈ D(E),

νf,g :=
1

2

(
νf+g − νf − νg

)
defines a signed measure.

We following bilinear form was introduced by Kunita in [?]. It measures the failure
of an infinitesimal generator to satisfy the Leibniz rule.

Definition 2.3.5. Let (E , D(E)) be a D.F. in L2(M,µ) with infinitesimal generator
L : D(L) ⊂ D(E) → D(E). Further, let A ⊂ D(E) be a subspace such that fg ∈ A
for all f, g ∈ A. The bilinear map

Γ(f, g) : A×A → L2(M,µ)

(f, g) 7→ 1

2

(
L(fg)− fLg − gLf

)
is called the carré du champ operator associated to L.

Energy measure: E(f, fh)− 1
2E(h, f

2) =
∫
M hdνf , h ∈ Cc(M)

Definition 2.3.6. A D.F (E , D(E)) is called local if ∀f, g ∈ D(E) with compact
supports such that supp(f) ∩ supp(g) = ∅ , then E(f, g) = 0.
It is called strongly local if ∀f, g ∈ D(E) with compact supports such that g|supp(f)=constant
, then E(f, g) = 0.

Theorem 2.3.7 (Beurling-Deny). Let (E , D(E)) be a regular D.F in L2(M,µ)
There exists unique positive Radon measures J,k and a unique strongly local D.F
(Ec, D(Ec)) such that :

E(f, g) = Ec(f, g)+
x

M×M\diag

(f(x)−f(y))(g(x)−g(y))J(dx, dy)+
∫
M
f(x)g(x)k(dx)

for any f, g ∈ D(E). J is called a jumping kernel measure, while k is called the
killing measure.
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CHAPTER 3

Dirichlet forms on fractals

3.1. Self-similar sets

Chapter 3 : DF’s on fractals - (SG) Motivation : Sierpinski Gasket
Q: Does there exist ”intrinsic” BM on SG?
A1: Limit of rescaled random walks
A2: Limit of DF’s
3.1 Self-similar sets
(M,d) complete metric space

Definition 3.1.1. A map ψ : M 7→M is called Lipschitz continuous (w.r.t. d) if

Lip ψ = sup
x,y∈M,x̸=y

d(ψ(x), ψ(y))

d(x, y)
<∞

When Lip ψ ∈ (0, 1), we call ψ a contraction map.

Remark : Since (M,d) is complete, by the Banach fixed point theorem, for any
contraction ψ :M 7→M , ∃!x ∈M such that ψ(x) = x.

Proposition 3.1.2. Let K(M)={K ⊆ M , K compact non-empty}. For any U,V
subsets of M define :

ρM (U, V ) = inf{ε > 0 : U ⊆ Vε and V ⊆ Uε}

where Vε is defined by Vε =
⋃
x∈V B(x, ε).

This metric is called the Hausdorff metric, and (K(M), ρM ) is a complete metric
space.
Proof : HW
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Note: The above metric on K(M) is not the same as the

ρ∗(U, V ) = inf{d(x, y) : x ∈ U, y ∈ V }

on K(M).
Indeed, pick M=Z , U = {1, 7}, V = {3, 6}. Then ρ∗(U, V ) = 1, but ρ(U, V ) = 2.

Lemma 3.1.3. For any U1, U2, V1, V2 in K(M),

ρM (U1 ∪ U2, V1 ∪ V2) ≤ max{ρM (U1, V1), ρM (U2, V2)}.

Proof. Let r > max{ρM (U1, V1), ρM (U2, V2)},
Then U1 ⊆ (V1)r, V1 ⊆ (U1)r and U2 ⊆ (V2)r, V2 ⊆ (U2)r
Therefore, U1 ∪ U2 ⊆ (V1 ∪ V2)r and V1 ∪ V2 ⊆ (U1 ∪ U2)r
And thus, ρM (U1 ∪ U2, V1 ∪ V2) ≤ r

Lemma 3.1.4. Let ψ : M 7→ M be a contraction (w.r.t d). Then ψ : K(M) 7→
K(M), U 7→ ψ(U) is also a contraction (w.r.t ρM )

Proof. We need to show that there exists some constant c ∈ [0, 1) such that
ρM (ψ(U), ψ(V )) ≤ cρM (U, V ), for all U, V ∈ K(M), so fix U, V ∈ K(M).
Let ε > 0. If U ⊆ Vε and V ⊆ Uε (and thus ρM (U, V ) ≤ ε) ,
then ψ(U) ⊆ ψ(Vε) ⊆ (ψ(V ))εLip(ψ),
ψ(V ) ⊆ ψ(Uε) ⊆ (ψ(U))εLip(ψ)
so, ρM (ψ(U), ψ(V )) ≤ Lipψ ρM (U, V ).

Theorem 3.1.5. Let {ψi}Ni=1 be contractions in (M,d).
The map ψ : K(M) 7→ K(M) , U 7→ ∪Ni=1ψi(U) , has a unique fixed point, F .
(i.e. F = ∪Ni=1ψi(F ) ).
Also, for any V in K(M), ρM (ψn(V ), F ) → 0 as n goes to infinity.

Proof. Let U, V ∈ K(M).
By applying the preceding two lemmas, we get
ρM (ψ(U), ψ(V )) = ρM (∪Ni=1ψi(U),∪Ni=1ψi(V )) ≤ max1≤i≤n ρM (ψi(U), ψi(V )) ≤
(max1≤i≤n Lip(ψi))ρM (U, V )

Example 3.1.6. Consider ψi : R2 7→ R2 , i = 1, 2, 3
x 7→ x−pi

2 + pi
are contractions with Lipψi =

1
2 .

∃!F ∈ K(R2) such that F = ∪3
i=1ψi(F )

Approximating graphs will have vertices V0 = {p1, p2, p3}.
Let Vn = ψn(V0) = ∪w∈{1,2,3}nψw(V0)
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Proposition 3.1.7. Let {ψi}Ni=1 be a family of contractions in M with unique fixed
point F ∈ K(M). For any {pi}Ni=1 ⊂ (0, 1)N with

∑N
i=1 pi = 1, there exists a unique

probability measure on F such that

µ(A) =
N∑
i=1

piµ(ψ
−1
i (A)) ∀A ⊂ F Borel. (3.1.1)

This measure is called the self-similar measure.

Proof. Idea: apply Banach fixed point theorem on a suitable metric space of mea-
sures. Consider the space

MF := {µ : Borel probability measure on F with bounded support}, (3.1.2)

endowed with the metric

ρF (µ1, µ2) := sup

{
|
∫
F
fdµ1 −

∫
F
fdµ2| : Lip(f) ≤ 1 and f bounded

}
. (3.1.3)

HW: (MF , ρF ) is a complete metric space.
Define the map Φ : MF → MF by

Φ(ν)(A) :=

N∑
i=1

piν(ψ
i−1
i (A)), A ⊂ F Borel. (3.1.4)

In particular, for any ν-integrable function f : F → R, we have∫
F
fdΦ(ν) =

N∑
i=1

pi

∫
F
f ◦ ψidν. (3.1.5)
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By computation, Φ is a contraction:

ρF (Φ(µ1),Φ(µ2))

= sup

{∣∣∣∣∫
F
fdΦ(µ1)−

∫
F
fdΦ(µ2)

∣∣∣∣ : Lip(f) ≤ 1

}
= sup

{∣∣∣∣∣
N∑
i=1

pi

(∫
F
f ◦ ψidµ1 −

∫
F
f ◦ ψidµ2

)∣∣∣∣∣ : Lip(f) ≤ 1

}

≤
N∑
i=1

pi sup

{∣∣∣∣∫
F
f ◦ ψidµ1 −

∫
F
f ◦ ψidµ2

∣∣∣∣ : Lip(f) ≤ 1

}

≤
N∑
i=1

piLip(ψi) sup

{∣∣∣∣∫
F
Lip(ψi)

−1f ◦ ψidµ1 −
∫
F
Lip(ψi)

−1f ◦ ψidµ2
∣∣∣∣ : Lip(f) ≤ 1

}

≤
N∑
i=1

piLip(ψi) sup

{∣∣∣∣∫
F
gdµ1 −

∫
F
gdµ2

∣∣∣∣ : Lip(g) ≤ 1

}

≤ max
1≤i≤N

Lip(Ψi) · (
N∑
i=1

pi) · ρF (µ1, µ2)

< ρF (µ1, µ2),

(3.1.6)

where we used the fact that Lip(Lip(ψi)
−1f ◦ ψi) ≤ 1.

Example 3.1.8 (Sierpinski Gasket). Set ψi : R2 → R2, i = 1, 2, 3 with x 7→ xpi
2 +pi,

and let µ be the standard Bernoulli probability measure on SG. Then,

µ(A) =
3∑
i=1

1

3
µ(ψ−1

i (A)). (3.1.7)

Fact: µ is equivalent to the log(3)
log(2) -Hausdorff measure.

3.2. Convergence of Dirichlet forms

Motivation We learned that on a finite graph like (Vn, En) the bilinear form{
E(n)(f, f) := 1

2

∑
x∼y(f(x)− f(y))2,

D(E(n)) = ℓ2(Vn, µn) = {f : Vn → R :
∑

x∈Vn |f(x)|, deg(x) <∞},
(3.2.1)

defines a Dirichlet form on ℓ2(Vn, µn). Since Vn → SG, we would wish E(n) → E .
Questions:
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1. How does one understand convergence of Dirichlet forms? (When each lives
in a different space)

2. Would the sequence {(E(n), D(E(n))}n≥1 converge?

Definition 3.2.1 (Convergence of Hilbert spaces). A sequence of Hilbert spaces
{Hn}n≥1 is said to converge to a Hilbert space H if there exists a dense subspace
C ⊂ H and a sequence of operators {Φn : C → Hn} such that

lim
n→∞

∥Φnf∥Hn = ∥f∥H, ∀f ∈ C. (3.2.2)

Example 3.2.2. For each n ≥ 0 consider the measure in Vn given by

µn =

{
2·−n+1 if x ∈ Vn \ V0
3−n+1 if x ∈ V0

. (3.2.3)

Further, let C = C(SG) ⊂ L2(SG, µ) and define Φn : C → L2(Vn, µn), f 7→ f |Vn .
Then,

lim
n→∞

∥Φnf∥2ℓ2(Vn,µn) = lim
n→∞

1

3

∑
x∈V0

3−n|f(x)|2 + 2

3

∑
x∈Vn\V0

3−n|f(x)|2

=(HW) lim
n→∞

1

3

3∑
i=1

∑
|w|=n:w is a word

f(ψwpi)µ(ψw(SG))

=

∫
SG

|f(x)|2dµ.

(3.2.4)

Definition 3.2.3 (Convergence). LetHn be a sequence of Hilbert spaces converging
to a Hilbert space {H}n≥1. A sequence with fn ∈ Hn is said to

1. strongly converge to f ∈ H} if there exists {f̃n}n≥1 ⊂ C such that

∥f̃n − f∥H −→ 0 and lim
m

lim sup
n

∥Φnf̃m − fn∥Hn = 0. (3.2.5)

2. weakly converge to f ∈ H if for all {gn}n≥1 with gn ∈ Hn and gn → g ∈ H
strongly, it holds that

⟨fn, gn⟩H\ → ⟨f, g⟩H. (3.2.6)

In particular, if fn → f strongly, then ∥fn∥Hn → ∥f∥H. A sequence of bounded
operators {Ln : D(Ln) ⊂ Hn → Hn}n≥1 is said to strongly converge to an operator
L : D(L) ⊂ H → H if for any sequence fn → f strongly, we have Lnfn → Lf
strongly.
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Example 3.2.4. For any f ∈ C(SG), the sequence fn := f |Vn converge strongly
to f by choosing f̃n ≡ f .
For any f ∈ L2(SG, µ), by density of C, select a sequence {f̃n} ⊂ C converging to f
in L2, and set fn = f̃n|Vn . Then, fn converge strongly to f .

Definition 3.2.5 (G convergence and Mosco convergence). A sequence of sym-
metric forms {En, D(En)}n≥1 is said to Γ-converge/ Mosco-converge to a symmetric
form (E , D(E)) if

1. for any {fn}n≥1(fn ∈ Hn) and fn → f ∈ H strongly/ weakly, we have

E(f, f) ≤ lim inf
n→∞

En(fn, fn), (3.2.7)

and

2. for any f ∈ H there exists {fn}n≥1(fn ∈ Hn) and fn → f ∈ H strongly and

E(f, f) ≥ lim sup
n→∞

En(fn, fn). (3.2.8)

Example 3.2.6. The sequence {En, ℓ(Vn)} where ℓ(Vn) = {f : Vn → R} Mosco
converges to

E(f, f) = lim
n→∞

En(f |Vn , f |Vn), ∀f ∈ C(SG). (3.2.9)

Theorem 3.2.7. Let {Hn}n≥1 be a sequence of Hilbert spaces that converge to a
Hilbert space H. A sequence of Dirichlet forms {En, D(En)}n≥1 (on Hn) Mosco con-
verge to a Dirichlet form (E , D(E)) (on H) if and only if the associated semigroups

{P (n)
t }t≥0 converge strongly to {Pt}t≥0

Proof. WLOG, set Hn = H.

(=⇒) By Hille-Yosida theorem, it suffices to show that R
(n)
λ f → Rλf strongly for

any λ > 0 and f ∈ H.
Fix λ and f . Since ∥R(n)

λ ∥ ≤ 1
λ (by theorem 1.3.6(i)) uniformly in n, there exists a

subsequence R
(nk)
λ → f̃ weakly.

1. Claim: f̃ = Rλf

Proof. We will use the following: (HW) Rλf is the unique minimizer of

E(g, g) + λ⟨g, g, ⟩H − 2⟨f, g⟩H. (3.2.10)

This imply (for any g ∈ H and n ≥ 1)

En(g, g)+λ⟨g, g, ⟩H−2⟨f, g⟩ ≥ En(R(n)
λ f,R

(n)
λ f)+λ⟨R(n)

λ f,R
(n)
λ f⟩−2⟨f,R(n)

λ f⟩.
(3.2.11)
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By definition of Mosco convergence, there exists a sequence {gn} such that
gn → f strongly and

lim sup En(gn, gn) ≤ E(f, f). (3.2.12)

By weak convergence of R
(nk)
λ f , Mosco convergence, and the above observed

facts, we have

E(f̃ , f̃) + λ⟨f̃ , f̃⟩ − 2⟨f, f̃⟩
≤ lim inf[Enk

(g, g) + λ⟨g, g⟩ − 2⟨f, g⟩]
≤ lim sup En(g, g) + λ⟨g, g⟩ − 2⟨f, g⟩
≤ E(g, g) + λ⟨g, g⟩ − 2⟨f, g⟩.

(3.2.13)

Hence, taking infimum over g, we conclude that the (HW) lemma implies the
desired claim.

2. Claim: ∥R(n)
λ f∥H → ∥Rλf∥H.

Proof. By the (HW) lemma,

En(R(n)
λ f,R

(n)
λ f)+λ⟨R(n)

λ f,R
(n)
λ f⟩−2⟨f,R(n)

λ f⟩ ≤ En(g, g)+λ⟨g, g, ⟩H−2λ⟨f
λ
, g⟩.

(3.2.14)
We add the term λ⟨fλ ,

f
λ⟩ on both sides and use the Parallelogram law to infer

that

λ∥R(n)
λ f − f

λ
∥2 ≤ λ∥g − f

λ
∥2 + En(g, g)− En(R(n)

λ f,R
(n)
λ f), (3.2.15)

for any g ∈ H. By definition of Mosco convergence, there exists a sequence
gn → Rλf strongly. Replacing g with gn above yields

λ∥R(n)
λ f − f

λ
∥2 ≤ λ∥gn −

f

λ
∥2 + En(gn, gn)− En(R(n)

λ f,R
(n)
λ f), (3.2.16)

We take limit-supremum and use Mosco convergence definition to conclude
that

lim sup
n→∞

λ∥R(n)
λ f − f

λ
∥2 ≤ λ∥Rλf − f

λ
∥2H. (3.2.17)

On the other hand, weak convergence imply the RHS is bounded by the limit-
infimum of the LHS. Thus,

lim
n→∞

∥R(n)
λ f − f

λ
∥2 = ∥Rλf − f

λ
∥2. (3.2.18)

We conclude the desired claim by parallelogram law in the above identity.
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Then, the above claims imply that R
(n)
λ f converge strongly to Rλf as desired.

(⇐=) We want to prove conditions (M1) and (M2) from Definition ??. We know

that P
(n)
t f

s−−−→
n→∞

Ptf for any t ∈ [0, t], t > 0 and f ∈ H. By virtue of Hille-Yosida,

the latter is equivalent to a corresponding statement for the resolvents, namely

R
(n)
λ f

s−−−→
n→∞

Rλf for all λ > 0 and f ∈ H.

(M1) Let fn
w−→ f , i.e. ⟨fn, g⟩H

n→∞−−−→ ⟨f , g⟩H. To prove that lim infn→∞ En(f, f) ≥
E(f, f), we use the characterization on Rλf from Exercise ??, namely

E(f, f) = lim
λ→∞

λ⟨(I −Rλf)f, f⟩H ∀ n ≥ 1

and in particular the latter quantity its non-decreasing. Thus, for any n ≥ 1

En(fn, fn) ≥ λ⟨(I −R
(n)
λ )fn, f⟩H

= λ⟨(I −R
(n)
λ )fn, fn⟩H − λ⟨(I −R

(n)
λ )f, f⟩H + λ < (I −R

(n)
λ )f, f⟩H.

Adding and subtracting λ < (I −R
(n)
λ )f, fn⟩H we obtain from the latter

En(fn, fn) ≥ λ⟨(I −R
(n)
λ )f, f⟩H + λ⟨(I −R

(n)
λ )f, fn − f⟩H

+ λ⟨(I −R
(n)
λ )(fn − f), fn⟩H

≥ λ⟨(I −R
(n)
λ )f, f⟩H + 2λ⟨(I −R

(n)
λ )f, fn − f⟩H.

Taking lim infn→∞ on both sides of the inequality and using the weak conver-

gence of R
(n)
λ we finally obtain

lim inf
n→∞

En(fn, fn) ≥
n→∞−−−→ λ < (I −Rλ)f, f⟩H

λ→∞−−−→ E(f, f).

(M2) Let f ∈ H. We want to find {fn}n≥1 ⊂ H such that fn
n→∞−−−→
s

f and

lim supn→∞ En(fn, fn) ≤ E(f, f). We know

(a) P
(n)
t

n→∞−−−→
s

Ptf and hence R
(n)
λ

s−→ Rλf for all λ > 0.

(b) A diagonal argument (HW) allows to choose a suitable subsequence for
which

(f, f) = lim
λ→∞

⟨(I − λRλ)f, f⟩H

≥ lim
λ→∞

lim
n→∞

⟩(I − λR
(n)
λ f, f⟩H

≥ lim
n→∞

λn⟩(I − λnR
(n)
λn
f, f⟩H,

© Patricia Alonso Ruiz 42



3.3. RESISTANCE CHAPTER 3. DIRICHLET FORMS ON FRACTALS

Define now fn := λnR
(n)
λn
f for each n ≥ 1. Then fn

n→∞−−−→
s

f because of

(a) and

E(f, f) ≥ lim
n→∞

λn⟨(I − λnR
(n)
λn
f, f⟩H

lim
n→∞

λn⟨(I − λnR
(n)
λn
fn, fn⟩H + λm∥f − fn∥2H

≥ lim sup
n→∞

En(fn, fn).

Notice that in practice, checking (M1) may be difficult to check directly. Alterna-
tively on can use the concept of asymptotically compactness.

Definition 3.2.8. A sequence {(En, D(En)}n≥1 of Dirichlet forms (on Hn or H) is
said to be asymptotically compact if for any {fn}n≥1 with fn ∈ Hn (or mathcalH)
and

lim inf
n→∞

(
Enfn, Enfn⟩H

)
<∞

has a strongly convergent subsequence.

Theorem 3.2.9. Let {(En, D(En))}n≥1 be a sequence of Dirichlet forms on Hn (or
H) that is asymptotically compact. Then, the sequence Γ-converges ifa and only if
it Mosco converges.

Proof. Mosco convergence implies Γ-convergences by definition, see Definition ??.
Thus, let us assume that the sequence Γ-converges and prove the property (M2) of
Mosco convergence. We argue by contradiction: Let {fn}n≥1 such that fn

w−→ f ∈ H
and suppose that

lim inf
n→∞

En(fn, fn) < E(f, f). (3.2.19)

Since fn
w−→ f , we can extract a subsequence {fnk

}k≥1 with ∥fnk
∥H

n→∞−−−→. Together
with (3.2.19),

lim inf
k→∞

Enk
(fnk

, fnk
) + ∥fnk

∥H <∞

and it follows from the asymptotic compactness that we may extract yet another
subsequence {fn′

k
}k≥1 that converges strongly. Since fn

w−→ f by assumption, it

must hold that fn′
k

s−→ f . However, if that is the case, by Γ-convergence it must
hold that E(f, f) ≤ lim infk→∞ En′

k
(fn′

k
, fn′

k
) which contradicts (3.2.19).

3.3. Resistance forms

Our original näıve guess to define a Dirichlet form on SG wasE(f, f) := lim
n→∞

∑
x
n∼y(f(x)− f(y))2

D(E) = C(SG)
E1
.

(3.3.1)
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But does this limit exist? Let us make a first computation to test whether the
above seems a meaningful definition. Let us start at the approximation level n = 0
and consider the function f0 ∈ ℓ(V0) described in Figure ??. Its energy will be

E0(f0, f0) = 12 + 12 = 2.

Now let us move to the approximation level n = 1 and consider a function f1 ∈ ℓ(V1)
that coincides with f0 on V0. If we compute its standard graph energy we obtain

E1(f1, f1) = 2(1− a)2 + 2(a− b)2 + 2a2 + 2b2.

One can now set up a minimization problem to find out which values of a, bminimize
that expression. A little calculus gives a = 2/5 and b = 1/5. Plugging above these
values,

E1(f1, f1) =
6

5
= 2

3

5
=

3

5
E0(f0, f0).

Repeating this procedure at level n = 2 we find

E2(f2, f2) = 2
(3
5

)2
.

An educated guess now tells us

En(fn, fn) =
(3
5

)n
E0(f0, f0)

n→∞−−−→ 0

Well, it looks like (3.3.1) might not be a good guess...

Now what??

Definition 3.3.1. A resistance form on (M,d) is a symmetric bilinear form (E , D(E)
such that

(R1) D(E) is a linear subspace of ℓ(M) that contains constants and such that
E(f, f) = 0 if and only if f is constant,

(R2) (D(E)/∼, E1/2) with f ∼ g if and only if f − g ≡ const is a Hilbert space,

(R3) D(E) separates points, i.e. for any x ̸= y ∈ M there exists f ∈ D(E) with
f(x) ̸= f(y),

(R4) For any x, y ∈M ,

RE(x, y) = sup
{ |f(x)− f(y)|2

E(f, f)
: f ∈ D(E), E(f, f) > 0

}
<∞,

(R5) (E , D(E)) satisfies the Markov property, i.e. for any f ∈ D(E), its unit con-
traction f̃ belongs to D(E) and E(f̃ , f̃) ≤ E(f, f).
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Where does the name come from? The connection to electric network theory is
apparent.

Definition 3.3.2. Let V ⊂ M be finite. A resistance network (E , ℓ(V )) is a non-
negative symmetric form given by

E(f, g) = ⟨f,−Hg⟩ℓ2(V ) f, g ∈ ℓ(V ),

for some symmetric linear operatorH : ℓ(V ) → ℓ(V ) with the property that E(f, f) =
0 if and only if f is constant.

The operator H is sometimes called a difference operator.

Proposition 3.3.3. Let V ⊂M be finite. A symmetric linear operator H : ℓ(V ) →
ℓ(V ) defines a resistance network if and only if

(D1) H⊺ = H;

(D2) H is irreducible, i.e. for any distinct x, y ∈ V there is a sequence x =
z1, z2, . . . , zN = y such that the entries Hzizi+1 ̸= 0;

(D3) H has negative diagonal, i.e. Hxx < 0 for all x ∈ V ;

(D4) For any distinct x, y ∈ V , Hxy ≥ 0.

Proof. Homework.

With the notation above, we my think of an electric network where V ⊂ M corre-
sponds to the set of nodes or terminals, H−1

xy is the resistance between the nodes x
and y, and for any potential f ∈ ℓ(V ), the quantity Hf corresponds to the current
associated with f .

In the context of electric networks there is a natural concept of distance, so-called
effective resistance, not to confuse with the resistance between two nodes.

Definition 3.3.4. Let V ⊂M be finite and (E , ℓ(V )) be a resistance network. The
associated effective resistance distance is defined as

RE(x, y) :=
(
min{E(f, f) : f ∈ ℓ(V ), f(x) = 0, f(y) = 1}

)−1

for any x, y ∈ V .

Example 3.3.5. The standard graph energy on any approximation level of the
Sierpinski gasket Vn defines a resistance network. Indeed one can check that

E(f, g) =
∑
x
n∼y

(f(x)− f(y))(g(x)− g(y))
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=
∑
x∈Vn

g(x)

(∑
y
n∼x

(f(x)− f(y)

)
= −⟨g,Hnf⟩ℓ2(Vn)

For the case n = 1 we can write explicitly the operator H1

H1 =



−2 0 0 1 1 0
0 −2 0 1 0 1
0 0 −2 0 1 1
1 1 0 −4 1 1
1 0 1 1 −4 1
0 1 1 1 1 −4


In order to construct a non-trivial limit form it will be useful to understand when
two networks are “electrically equivalent”.

Definition 3.3.6. Let V1 ⊂ V2 ⊂M be finite. Two resistance networks (E1, ℓ(V1))
and (E2, ℓ(V2)) are called compatible if for all f ∈ ℓ(V1)

E1(f, f) = min{E2(g, g) : g ∈ ℓ(V2), g|V1 ≡ f}.

The function that attains the minimum above is called the harmonic extension of
f to V2.

Example 3.3.7. Consider the standard graph energy of the two first approxima-
tions of the Sierpinski gasket, V0 ⊂ V1 from Figure ??,

E0(f, f) =
∑
x

0∼y

(f(x)− f(y))2, f ∈ ℓ(V0)

E1f, f) =
∑
x

1∼y

(f(x)− f(y))2, f ∈ ℓ(V1).

Given f ∈ ℓ(V0) as in Figure ??, we ask ourselves how to extend f to a function
g ∈ ℓ(V1) that minimizes E1(g, g). Calling x, y, z the unknown values of g in V1 \V0,
and solving the corresponding (quadratic) minimization problem one arrives at

x =
2

5
a+

2

5
b+

1

5
c

y =
2

5
b+

2

5
c+

1

5
a

z =
2

5
a+

2

5
c+

1

5
b.

This is usually called the “2
5 -

1
5 rule”. Plugging into E1(g, g) we obtain

E1(g, g) =
3

5
E0(f, f).
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Thus, defining

E0(f, f) := E1(f, f), f ∈ ℓ(V0)

E1(f, f) :=
5

3
E1(f, f), f ∈ ℓ(V1)

makes these networks compatible.

Proposition 3.3.8. Let V ⊂ M finite and (E , ℓ(V )) a resistance network with
operator H : ℓ(V ) → ℓ(V ). For any U ⊂ V let

H =

(
TU JTU
JU XU

)
.

Then:

(i) Ẽ(f, g) := −⟨f,XUg⟩ℓ2(V \U) defines a resistance network in V \ U .

(ii) The resistance network (EU , ℓ(U)) given by

EU (f, g) = −⟨f, (TU − JTUX
−1
U JU )g⟩ℓ2(U)

is compatible with (E , ℓ(V )).

Proof. (i) Extend f, g ∈ ℓ(V \ U) by zero on U .

(ii) (a) Using characterization of HU := TU − JTUX
−1
U JU from Prop 3.3.3 we get

that (EU , ℓ(U)) defines a resistance network.

(b) For compatibility with (E , ℓ(V )) we need to check that

EU (f, f) = min{E(g, g) : g ∈ ℓ(V ), g|U = f}, ∀f ∈ ℓ(U).

Observe that for g ∈ ℓ(V ) with f = g|U we have

E(g, g) = −⟨g,Hg⟩ℓ(V ) = −
(
g|U g|V \U

)(TU JTU
JU XU

)(
g|U
g|V \U

)
= ⟨g|U ,−TUg|U ⟩ − ⟨g|U , JTU g|V \U ⟩ − ⟨g|V \U , JUg|U ⟩
− ⟨g|V \U , XUg|V \U ⟩ (±⟨g|U , (JTUX−1

U JU )g|U ⟩)
= −⟨g|U , TUg|U ⟩+ ⟨g|U , (JTUX−1

U JU )g|U ⟩
− ⟨JUg|U , g|V \U ⟩ − ⟨X−1

U JUg|U , JUg|U ⟩
− ⟨g|V \U , JUg|U ⟩ − ⟨g|V \U , XUg|V \U ⟩

= −⟨g|U , (TU − JTUX
−1
U JU )g|U ⟩

− ⟨X−1
U JUg|U , XUg|V \U ⟩ − ⟨X−1

U JUg|U , JUg|U ⟩
− ⟨g|V \U , XUg|V \U + JUg|U ⟩
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= −⟨g|U , (TU − JTUX
−1
U JU )g|U ⟩

− ⟨X−1
U JUg|U , XUg|V \U + JUg|U ⟩ − ⟨g|V \U , XUg|V \U + JUg|U ⟩

= −⟨g|U , (TU − JTUX
−1
U JU )g|U ⟩

− ⟨g|V \U +X−1
U JUg|U , XUg|V \U + JUg|U ⟩

= −⟨g|U , (TU − JTUX
−1
U JU )g|U ⟩

− ⟨g|V \U +X−1
U JUg|U , XUg|V \U + JUg|U ⟩

= −⟨g|U , (TU − JTUX
−1
U JU )g|U ⟩

− ⟨g|V \U +X−1
U JUg|U , XU (g|V \U +X−1

U JUg|U )⟩

= EU (g|U , g|U ) + Ẽ(g|V \U +X−1
U JUg|U , g|V \U +X−1

U JUg|U ).

Since Ẽ(g|V \U + X−1
U JUg|U , g|V \U + X−1

U JUg|U ) ≥ 0, for f = g|U , we
have

EU (f, f) = min{E(g, g) : g ∈ ℓ(V ), g|U = f}

and the minimum is attained for

g =

{
f, in U

X−1
U JUf, in V \ U.

Corollary 3.3.9. Let (E , ℓ(V )) and (Ẽ , ℓ(U)) with U ⊂ V . These resistance net-
works are compatible if and only if

Ẽ(f, f) = −⟨f, (TU − JTUX
−1
U JU )f⟩ℓ2(U),

for

H =

(
TU JTU
JU XU

)
being the associated operator of (E , ℓ(V )).

Example 3.3.10. On the triangle, V0, with vertices p1, p2, p3 and resistances be-
tween them 1, we have

E0(f, g) = −⟨f,H0g⟩,

with

H0 =

−2 1
1 −2

1
1

1 1 −2

 .

The effective resistance between p1, p2 is

RE0(p1, p2) = (min{E0(f, f) : f(p1) = 0, f(p2) = 1})−1
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= (E0(δp2 , δp2))−1

= (⟨δp2 , (TU − JTUXUJU )δp2⟩)−1

=

[(
0 1

) [(−2 1
1 −2

)
+

(
1
1

)
2−1

(
1 1

)](0
1

)]−1

=

[(
0 1

) 3
2

(
−1 1
1 −1

)(
0
1

)]−1

=
2

3
,

where U = {p1, p2} and δp2 =

{
0, on p1

1, on p2
.

Lemma 3.3.11. Let (E , ℓ(V )) and (Ẽ , ℓ(U)) with U ⊂ V be compatible resistance
networks. Then,

RE(x, y) = RẼ(x, y), ∀x, y ∈ U.

Proof.

RE(x, y) = (min{E(f, f) : f ∈ ℓ(V ), f(x) = 0, f(y) = 1})−1

= (min{min{E(f, f) : f ∈ ℓ(V ), f |U = g} : g(x) = 0, g(y) = 1})−1

= (min{Ẽ(g, g) : g ∈ ℓ(U), g(x) = 0, g(y) = 1})−1

= RẼ(x, y).

Theorem 3.3.12. Let (E , ℓ(V )) be a resistance network. The effective resistance:

RE(x, y) := (min{E(f, f) : f ∈ ℓ(V ), f(x) = 0, f(y) = 1})−1

defines a metric in V .

Proof. For the triangle inequality: Let U = {x, y, z} ⊂ V , H̃ = TU − JTUX
−1
U JU ,

H̃−1
xy the resistance between x, y, and H = (Hxy)x,y∈V =

(
TU JTU
JU XU

)
. Then, by

Lemma 3.3.11, we have

RE(x, y) = RẼ(x, y) = (⟨δy,
˜̃
Hδy⟩)−1 = · · · =

H̃−1
xy (H̃

−1
xz + H̃−1

yz )

H̃−1
xy + H̃−1

xz + H̃−1
yz

.

Thus far we have only considered a finite number (one or two) of resistance forms.
However ultimately we want to consider a sequence o approximating forms and its
limit in the following sense.
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Definition 3.3.13. Let V0 ⊂ V1 ⊂ . . . ⊂ Vm ⊂ . . . ⊂ M be a sequence of finite
sets. The sequence of resistance networks {(Em, ℓ(Vm)}m≥0 is said to be compatible
if (Em, ℓ(Vm)) and (Em+1, ℓ(Vm+1)) are compatible for all m ≥ 0.

Definition 3.3.14. The limit of a compatible sequence of resistance forms {(Em, ℓ(Vm)}m≥0

is the form (E∗, D(E∗)) defined as{
E∗(f, f) := limm→∞ Em(f |Vm , f |Vm),
D(E∗) := {f ∈ ℓ(V∗) : E∗(f, f) <∞},

where V∗ :=
⋃
m≥0 Vm.

Remark 3.3.15. By definition of compatibility, for any f ∈ D(E∗

Em(f |Vm , f |Vm) = min{Em+1(g, g) : g|Vm = f, g ∈ ℓ(Vm+1} ≤ Em+1(f |Vm+1 , f |Vm+1).

Thus, the sequence {Em(f |Vm , f |Vm)}m≥0 is monotone increasing and hence the limit
E∗(f, f) is well-defined.

Lemma 3.3.16. Let (E∗, D(E∗)) be the limit of compatible sequence of resistance
networks. The associated effective resistance distance satisfies

RE∗(x, y) = max
{ |f(x)− f(y)|2

E∗(f, f)
: f ∈ D(E∗), f(x) ̸= f(y)

}
.

Proof. Let f ∈ D(E∗) and note that for any g = af + b with a, b ∈ R,

|g(x)− g(y)|2

E∗(g, g)
=
a2|f(x)− f(y)|2

a2E∗(f, f)
=

|f(x)− f(y)|2

E∗(f, f)
.

If f(x) ̸= f(y), writing g(z) = f(z)−f(x)
f(y)−f(x) we have g(x) = 0, g(y) = 1 and

max
{ |f(x)− f(y)|2

E∗(f, f)
: f ∈ D(E∗), f(x) ̸= f(y)

}
= max

{ 1

E∗(g, g)
: g ∈ D(E∗), g(x) = 0, g(y) = 1

}
=
(
min{E∗(g, g) : g ∈ D(E∗), g(x) = 0, g(y) = 1})−1 = RE∗(x,y)

Theorem 3.3.17. Let (E∗, D(E∗)) be the limit of compatible sequence of resistance
networks.

(i) E∗ is a non-negative bilinear form, any f ∈ D(E∗) is continuous with respect to
the effective resistance metric and E∗(f, f) = 0 if and only if f is constant;
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(ii) For any f, g ∈ D(E∗) let f ∼ g if and only if f−g ≡ const. Then (D(E∗)/∼, E1/2
∗ )

is a Hilbert space;

(iii) For any finite set V ⊂ V∗ and f ∈ ℓ(V ) there exists f∗ ∈ D(E∗) such that
f∗|V ≡ f .

(iv) For any x, y ∈ V∗

max
{ |f(x)− f(y)|2

E∗(f, f)
: f ∈ D(E∗), f(x) ̸= f(y)

}
defines a metric in V∗;

(v) (E∗, D(E∗)) satisfies the Markov property.

Proof. Let {(Em, ℓ(Vm)}m≥0 denote the sequence of compatible networks.

(i) We prove continuity (in fact Hölder continuity. By virtue of Lemma 3.3.16, for
any x, y ∈ V∗ and f ∈ D(E∗)

|f(x)− f(y)|2 = E∗(f, f)
|f(x)− f(y)|2

E∗(f, f)
≤ E∗(f, f)RE∗(x, y).

(ii) We prove completeness of the space. First note that by fixing x0 ∈ V∗, the

space F0 := f ∈ D(E∗) : f(x0) = 0} equipped with the norm E1/2
∗ is isomorphic to

(D(E∗)/∼, E1/2
∗ ). We thus show that (F0, E1/2

∗ ) is complete. Let {fn}n≥1 ⊂ F0 be
Cauchy.
For any g ∈ ℓ(Vm), let hm(g) ∈ ℓ(V∗) denote the harmonic extension of g to V∗,
that is the function such that

E∗(hm(g), hm(g)) = min{E∗(f, f) : f ∈ D(E∗), f |Vm ≡ g}.

Due to the compatibility of the sequence of networks, Em(g, g) = E∗(hm(g), hm(g)
for all g ∈ ℓ(Vm). In this manner, E∗ defines an inner product on ℓ0(Vm) := {g ∈
ℓ(Vm) : g(x0) = 0} for any m large enough so that x0 ∈ Vm. Thus, since {fn}n≥1 is
E∗-Cauchy, for any such large m we have

E∗(fk|Vm , fl|Vm) ≤ E∗(fk, fl)
k,l→∞−−−−→ 0

whence {fn|Vm}n≥1 is Em-Cauchy and therefore convergent in ℓ0(Vm). Let gm ∈
ℓ0(Vm) denote the limit of this function, i.e.

Em(gm − fk|Vm , gm − fk|Vm
k→∞−−−→ 0 (3.3.2)
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and in particular gm+1|Vm = gm because Em(gm − gm+1|Vm , gm − gm+1|Vm) = 0.
Therefore, there is g ∈ ℓ0(Vm) such that g|Vm = gm for all m large enough.
We now need to check that g ∈ D(E). By definition,

Em(g|Vm , g|Vm) = Em(gm, gm)
= Em(gm − fk|Vm , gm − fk|Vm) + 2Em(gm − fk|Vm , fk|Vm) (3.3.3)

+ Em(fk|Vm , fk|Vm)
< sup

k,m
Em(fk|Vm , fk|Vm),

where the terms in (3.3.3) can be made arbitrarily small using Cauchy-Schwarz
and (3.3.2).
Finally, we claim that E∗(g − fn, g − fn)

n→∞−−−→ 0. Indeed, let ε > 0. First, we can
choose n > 0 such that

E∗(fn − fk, fn − fk) < ε ∀ k > n. (3.3.4)

Now we may choose M such that

|E∗(g − fn, g − fn)− Em(gm − fn|Vm , gm − f |Vm)| < ε∀m > M (3.3.5)

and k > 0 so that

|Em(gm − fn|Vm , gm − f |Vm)− Em(fn|Vm − fk|Vm , f |Vm)− fk|Vm | < ε ∀ k > n.
(3.3.6)

(iii) Let V ⊂ V∗ be finite and f ∈ ℓ(V ). Then there existsM > 0 such that V ⊂ Vm
for all m ≥M . First we can extend f to Vm by defining fM ≡ f on V and f ≡ 0 on
Vm \ V . We can then take the harmonic extension f̄ = hM (fM ), which necessarily
satisfies

E∗(f̄ , f̄) ≤ E(fM , fM ) ≤ ∞.

(iv) Combine Theorem 3.3.12 and Lemma 3.3.16.

(v) Let f ∈ D(E∗). Then its unit contraction f̃ satisfies

E∗(f̃ , f̃) := lim
m→∞

Em(f̃ |Vm , f̃ |Vm) = lim
m→∞

−⟨Hmf̃ |Vm , f̃ |Vm⟩ℓ2(Vm)

= lim
m→∞

∑
y
n∼x

(Hm)
−1
xy (f̃(x)− f̃(y))2 ≤ lim

m→∞

∑
y
n∼x

(Hm)
−1
xy (f(x)− f(y))2.

Corollary 3.3.18. Let (E∗, D(E∗)) be the limit of a compatible sequence of re-
sistance networks {(Em, ℓ(Vm))}m≥0 with V∗ =

⋃
m≥0 Vm. Then (E∗, D(E∗)) is a

resistance form on (V∗
RE∗ , RE∗).
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Proof. Any f ∈ D(E∗) is Hölder continuous with respect to RE∗ . We may then

extend f to V∗
REx by density.

Example 3.3.19. We would like to construct (E∗, D(E∗)) on (SG,RE∗). If we write
SG =

⋃3
i=1 ψi(SG) and denote the three corner points of SG by p1, p2, and p3, we

may define

V0 = {p1, p2, p3}, and Vm =
3⋃
i=1

ψi(Vm−1), m ≥ 1. (3.3.7)

Then we have that for V∗ =
⋃3
i=1 ψi(Vm−1), V∗

dE = SG. If we can show that the
topologies induced by dE and RE∗ coincide, then V∗ will be dense with respect to
RE∗ and we may apply Corollary 3.3.18.
To show this, first let x, y ∈ Vm be neighbors at level m, so that dE(x, y) =

(
1
2

)m
.

Let hy be the harmonic extension of

δy(z) =

{
1, z = y

0, x ∈ V∗ \ {y}.

Note that δy(z) ∈ ℓ(Vm). By harmonicity, we have

E∗(hy, hy) = lim
n→∞

En(hy|Vn , hy|Vn) = Em(δy(z), δy(z))

=
∑
y
m∼x

(
5

3

)m
(δy(x)− δy(y))

2

=

{
4
(
5
3

)m
if y ∈ Vm \ V0

2
(
5
3

)m
if y ∈ V0.

On the one hand, by definition, RE∗(x, y) is a maximum over all functions f ∈ D(E∗)
with f(x) = 0 and f(y) = 1 of, so

|hy(x)− hy(y)|
E∗(hy, hy)

≤ RE∗(x, y).

On the other hand, hy minimizes E∗(f, f) for any f ∈ D(E∗) with f(x) = 0 and
f(y) = 1 of, so

|hy(x)− hy(y)|
E∗(hy, hy)

=
1

E∗(hy, hy)
≥ RE∗(x, y).

We see that

RE∗(x, y) ≈
(
5

3

)m
= dE(x, y)

log(5/3)
log(2) .

Note that the exponent here is dw − dH , where dw = log(5)
log(2) is the walk dimension

and dH = log(3)
log(2) is the Hausdorff dimension. This relationship holds for neighboring
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points at level m. For any two points, we may construct a chain of such neighboring
points which connects the two, so in fact, this relation holds for all points. Hence,

the topologies agree, so V∗
dE = V∗

RE∗ = SG and we may apply Corollary 3.3.18.

Theorem 3.3.20. Let (E ,F) be a resistance form on (M,RE∗) and assume (M,RE∗)
is separable. Further, let µ be a σ-finite Borel measure on (M,RE∗) and

E1(f, g) := E(f, g) +
∫
M
fgdµ.

If F ∩L2(M,dµ) is dense in L2(M,µ) with respect to ∥ · ∥L2(M,µ), then there exists
a non-positive self-adjoint operator L : D(L) ⊂ L2(M,µ) → L2(M,µ) such that

E(f, g) = −⟨L1/2f, L1/2g⟩L2(M,µ).

In particular, (E ,F ∩ L2(M,dµ)) is a Dirichlet Form on (M,RE∗).

We use the following characterization.

Theorem 3.3.21. Let (E , D(E)) be a densely defined symmetric non-negative bi-
linear form in L2(M,µ). The following are equivalent:

(i) There exists a non-positive self-adjoint L : D(L) → L2(M,µ) such that E(f, g) =
−⟨L1/2f, L1/2g⟩L2(M,µ)

(ii) (D(E), E1/2
1 ) is a complete (Hilbert) space.

Proof. See Heat Kernels and Spectral Theory by E. B. Davies.

Proof of Theorem 3.3.20. First, we show that the space (D(E), E1/2
1 ) is complete,

where E1/2
1 (f, f) = ε(f, f) +

∫
M f2dµ.

Let {fn}n≥1 ⊆ D(E) be E1-Cauchy. Then,

E(fn − fm, fn − fm) → 0 as n,m→ ∞, (*)

∥fn − fm∥L2 → 0 as n,m→ ∞. (**)

1○ Take x0 ∈ M and set gn = fn − fn(x0), then by property (R2) of resistance
forms, ∃g ∈ F with g(x0) = 0 and such that ε(gn − g, gn − g) → 0 as n,m→ ∞.

2○ By virtue of (R4) in the definition of resistance forms,

|gn(x)− g(x)|2 = |(gn − g)(x)− (gn − g)(x0))|2 ≤ E(gn − g, gn − g)RE(x, x0).

3○ Since µ is σ-finite there exists a sequence of bounded sets {Mm}m≥0 with 0 <

µ(Mm) < ∞, and
⋃
mMm = M . Therefore, by 2○, ∥gn|Mm − g|Mm∥

n→∞−−−→ 0,
∀m ≥ 0, which means gn|Mm is L2(Mm, µ|Mm)-Cauchy.

We also need that {fn(x0)}n≥1 converges to something, but it follows from (**)
that (−gn|Mm + fn|Mm) (= fn(x0)) is Cauchy in L2(Mm, µ|Mm) hence ∃c ∈ R such
that fn(x0)

n→∞−−−→ c.
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4○ Define f = g + c and check :

a○ E(f − fn, f − fn)
n→∞−−−→ 0

b○ ∥f − fn∥L2
n→∞−−−→ 0.

To prove a○,

E(f − fn, f − fn) = E(g + c− gn − fn(x0), g + c− gn − fn(x0))

= E(g − gn, g − gn) + 2ε(g − gn, c− fn(x0)) + E(c− fn(x0), c− fn(x0)).

b○ We know fn|Mm = gn|Mm + fn(x0)
L2(Mm,µ)−−−−−−→
n→∞

g|Mm + c = f |Mm . Thus, by (**)

there exists f̃ ∈ L2(M,µ) such that ||fn − f̃ ||L2(M,µ) −−−→
n→∞

0, and thus

f̃ |Mm = f |Mm for all m.

3.4. Singularity of energy measure on SG

Let us recall that (E , D(E) is a local and regular Dirichlet form on SG. For any
f ∈ D(E), the energy measure of f was defined as the measure νf such that∫

M
hdνf = E(f, fh)− 1

2
E(f2, h) = −⟨f, L(fh)⟩+ 1

2
⟨L(f2), h⟩

∀h ∈ Cc(M), and notice that
∫
M dνf = E(f, f). When existent, the associated

Carré du champ operator satisfies

Γ(f, f) =
1

2
L(f2)− fL(fh)

so that ∫
M
hΓ(f, f)dµ = ⟨h,Γ(f, f)⟩ = 1

2
⟨L(f2), h⟩ − ⟨fL(fh), h⟩.

The main theorem of this is section is:

Theorem 3.4.1. For any f ∈ D(E) ⊆ L2(SG, µ) the energy measure νf is singular
w.r.t µ.

Before proving it, we recall some basics about the construction of SG. First,

SG =

3⋃
i=1

ψi(SG) = Ψ(SG).
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Second, we define Wm to be the space of words {1, 2, 3}m, and W∗ :=
∞⋃
i=1

Wm. In

this way, the graphs that approximate SG have vertex set

Vm =
⋃

w=Wm

ψw1 ◦ ψw2 ◦ ... ◦ ψwm(V0).

Finally, SG is equipped with the standard Bernulli measure which satisfies

µ(SG) =
3∑
i=1

µ(ψi(SG)).

Note that µ(ψi(SG)) =
1
3 .

Proposition 3.4.2. For any x ∈ SG, there exists w ∈WN
1 , not necessarily unique,

such that
x =

⋂
m≥0

ψw1...wm(SG) = lim
m→∞

ψw1...wm(SG).

Proof. This follows from the fact that we have a monotone decreasing sequence of
compact sets, ψw1...wm(SG) = ψw1...wm−1ψwm(SG) ⊆ ψw1...wm−1(SG) ⊂ SG.

Corollary 3.4.3. For any x ∈ SG, there exists {Tn}n≥0, Tn = ψw1...wm(SG), such

that d(x, Tn)
n→∞−−−→ 0.

Lemma 3.4.4. (SG, {T xn }n≥1,x∈SG, µ) is a probability space.

The proof of this is left as an exercise, following from the fact that {T xn : n ≥ 1}x∈SG
is a basis for the topology of SG.

The next Lemma will use the Lebesgue differentiation theorem for doubling mea-
sures. In the case of SG we have something stronger: there is c > 0 such that
c−1rα ≤ µ(B(x, r)) ≤ crα for some exponent α. Indeed, if r > 0 and n satisfies
2−n < r ≤ 2−n+1, then

1

3
r

log 3
log 2 ≤ 2

−n log 3
log 2 =

1

3n
= µ(T xn ) ≤ µ(B(x, r)) ≤ µ(T xn−1) ≤ 3r

log 3
log 2 .

A measure satisfying this property is called log 3
log 2 -Ahlfors regular because there is a

constant C > 0 such that

C−1d(x, y)
log 3
log 2 ≤ µ(B(x, r)) ≤ Cd(x, y)

log 3
log 2

for any x, y ∈ SG.

Lemma 3.4.5. Let f ∈ D(E) with associated energy measure νf . Assume that for
µ-a.e. x ∈ SG and {T xn },

lim
n→∞

3nνf (T
x
n ) = 0.

Then νf ⊥ µ.

© Patricia Alonso Ruiz 56



3.4. SINGULARITY CHAPTER 3. DIRICHLET FORMS ON FRACTALS

Proof. Suppose ν ≪ µ. Then, there is a measurable function h such that for µ-a.e.
x ∈ SG,

0 = lim
n→∞

νf (T
x
n )

µ(T xn )
= lim

n→∞

1

µ(T xn )

∫
Tx
n

hdµ = h(x),

where the first equality follows from assumption and the last by Lebesgue differen-
tiation.

The strategy to prove theorem 3.4.1 (DOUBLE CHECK NUMBERING) is to first
show lemma 3.3.23 for harmonic functions (i.e. it minimizes E(f, f)), and then
extend to any function.

Lemma 3.4.6. There exist matrices A1, A2, A3 ∈ M3×3 such that for any harmonic
function h,

h|ψi(V0) = Aih|V0 . (∗)

In particular, dim{h ∈ D(E) : h is harmonic} = 3 and A2
1 +A2

2 +A2
3 =

3
5I.

Proof. A basis for the space of harmonic functions is given by {h1, h2, h3} where
each of these functions is defined to be 1 in a different vertex of V0 and 0 elsewhere.
Therefore the space of harmonic functions is 3-dimensional. By applying the ”2

5 ,
1
5

rule”, one finds the matrices

A1 =

 1 0 0
2/5 2/5 1/5
2/5 1/5 2/5

 , A2 =

2/5 2/5 1/5
0 1 0
1/5 2/5 2/5

 , A3 =

2/5 1/5 2/5
1/5 2/5 2/5
0 0 1


satisfying (∗) and then the equality A2

1 +A2
2 +A2

3 =
3
5I follows by a direct compu-

tation.

Corollary 3.4.7. There exist matrices Ã1, Ã2, Ã3 ∈ M2×2 such that any non con-
stant harmonic function satisfies

h|ψi(V0) = Ãih|V0 .

Proof. One can construct a basis for this subspace by choosing {h̃1, h̃2} as linear
combinations of the basis specified in the previous lemma so that constants are not
included in their span. Then, Ãi is obtained by expressing Ai with respect to this
new basis.

We proceed to the proof of theorem 3.4.1 (NUMBER MAY CHANGE – DOUBLE-
CHECK).

Proof. The goal is to show that for x ∈ SG and {T xn } an approximating sequence
of n-cells, 3nνh(Tn) → 0 as n → ∞ whenever h is harmonic and non constant. It
suffices to show that

1

n
log(3nνn(T

x
n )) < 0
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for large n. The reason of this is we can use a result in random matrix the-
ory due to Frustenberg and Kesten, which states that for Y1, Y2, . . . an i.i.d. se-
quence of n × n matrices with E[(log Yi)+] < ∞, there exists γ ̸= 0 such that
limn→∞

1
n log ∥Y1 · · ·Yn∥ = γ almost surely.

Step 1: To x there corresponds a word w1w2 . . . which gives an approximate se-
quence of triangular cells T xn = ψw1w2...wn(SG). By virtue of Corollary 3.4.7, any
harmonic function h may be approximated by

h|Tn = Awn · · ·Aw1h|V0 .

Step 2: Note that

3nνh(T
x
n ) = 3n

∑
z
n∼y

z,y∈Tx
n

(
5

3

)n
(h(z)− h(y))2

= 3n
(
5

3

)n
E0(h ◦ ψw1...wn , h ◦ ψw1...wn)

= 3n
(
5

3

)n
⟨−H0Awn · · ·Aw1h,Awn · · ·Aw1h⟩ℓ2

= 3n
(
5

3

)n
∥(−H0)

1/2Awn · · ·Aw1h∥2ℓ2

= 5n∥(−H0)
1/2Awn · · ·Aw1h∥2ℓ2 .

Step 3: Now,

∥(−H0)
1/2h|V0∥2ℓ2 = E0(h, h)

=

3∑
i=1

(
5

3

)
E0(h ◦ ψi, h ◦ ψi)

= 5

3∑
i=1

∫
ψi(SG)

∥∥(−H0)
1/2Ai(x)h|V0

∥∥2
ℓ2
dµ(x)

= 5

∫
SG

∥∥(−H0)
1/2Aw1(x)h|V0

∥∥2
ℓ2
dµ(x)

= . . . = 5n
∫
SG

∥∥(−H0)
1/2Awn · · ·Aw1(x)h|V0

∥∥2
ℓ2
dµ(x).

Step 4: Lastly observe that∫
SG

log ∥(−H0)
1/2Awn · · ·Aw1(x)h|V0∥ℓ2dµ(x)

< log

∫
SG

∥(−H0)
1/2Awn · · ·Aw1(x)h|V0∥ℓ2dµ(x)
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≤ 1

2
log

[∫
SG

∥(−H0)
1/2Awn · · ·Aw1(x)h|V0∥2ℓ2dµ(x)

]
=

1

2
log 5−n∥(−H0)

1/2h|V0∥2ℓ2

where the first and second inequalities follow by Jensen and Cauchy-Schwartz re-
spectively, and the last equality follows by step 3. So by Frustenberg-Kesten,

lim
n→∞

1

n
log ∥(−H0)

1/2Awn · · ·Aw1h|V0∥ = γ <
1

2
log 5−1.
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